
SPS: An Efficient, Persistent Key-Value Store

Dominic Kao
dkao@mit.edu

Helen Xunjie Li
xunjieli@mit.edu

Ruwen Liu
ruwenliu@mit.edu

Patricia Adriana Suriana
psuriana@mit.edu

ABSTRACT
Our final project is an extention of the Lab4 ShardKV store
that is both faster and more reliable. Our main areas of
implementation were 1) The Mencius variant of the Paxos
protocol, 2) A persistence architecture which uses periodic
checkpointing, and 3) A deployment framework for testing
a real-life distributed key-value store over Amazon’s AWS.

1. INTRODUCTION
The main goal of the project is to design a key-value store
that is resistent to failures and guarantees external consis-
tency. Our second goal is to make this key-value store fast
and efficient, while providing recovery in the failure cases
listed in the default project requirements. Our final project
is the Mencius variant of Paxos that backs up data to disk
and a data checkpoint system for ShardKV. Our disk writes
in both Mencius and ShardKV allow for fast recovery in the
case of failure and loads data from other replicas in the case
of total disk loss. Additionally, we tested the performance of
this system when run on an actual distributed system. The
latter half of our project involves porting the code to Ama-
zon’s AWS service and setting up a testing framework across
multiple machines. At the end of the report, we include data
of the performance of our implementation.

2. MENCIUS
Since we were asked to implement a more efficient Paxos
protocol, we decided to build Mencius. While Mencius is
described in detail in [1] and pseudo-code can be found in
the technical report in [2], there are several factors that make
building Mencius challenging: 1) despite being conceptually
similar to Paxos (i.e., using striped instances, skipping turns
using no-ops) applying these simple optimizations requires
a complete re-design and re-building of the protocol from
scratch, and 2) the pseudocode can hardly be used if we
want to maintain the simple API from the labs as the sepa-
rations of responsibility between library/mencius/client are
substantially different. For example, the project member
that worked on Mencius finished Lab4B in a day, whereas
building Mencius alone took on the order of 5x the time/effort.
First, we had to rebuild our Paxos library (Lab3A). We
maintain the same API:

// px = paxos.Make(peers []string, me string)
// px.Start(seq, v) -- coordinator suggests instance
// px.Status(seq) (bool, v) -- get info about instance
// px.Done(seq) -- ok to forget all instances <= seq
// px.Max() int -- highest instance seq known, or -1
// px.Min() int -- instances before this seq forgotten
// px.Revoke(seq) -- non-coordinator wants to revoke seq

The only difference is an added API function called px.Revoke.
Start is only called on a paxos instance that owns seq (and it
skips the prepare phase), whereas Revoke is called when the
paxos instance does not own seq (it tries to propose a no-
op). Start begins a new goroutine, and as a first step sends
Paxos.Accept messages, sending Paxos.Decided if it hears
back from a majority. The tricky thing here is that Start
(as defined in the labs) should always decide on an instance,
if it doesn’t it keeps trying. This is one major difference
from the pseudocode found in [2] (in the technical report,
the pseudocode in Appendix C, Mencius deals with retrying
if a proposed op does not succeed for a particular instance,
not the library, i.e. Coordinated Paxos in Appendix A). We
handle this by checking how many iterations have occurred;
after the first iteration (i.e., did not receive a majority upon
sending Paxos.Accept), the loop reverts to regular Paxos.
In Revoke, we start a new goroutine that tries to propose a
no-op (servers can only propose no-op to instances they do
not own), this is analogous to the prepare/accept/decided
phases in the original Paxos.

The difficult part is not in implementing the general idea,
but in the little details that cause small corner-case failures.
For instance, it is absolutely crucial that new instances (ones
seen for the first time by the library) are initialized with n a
equal to -1 (one of our first designs decided this was unnec-
essary and initialized it to 0 until realizing that doing this
required major changes to the protocol). We built Mencius,
while maintaining integration with the Lab3A API (piggy-
backed done values, status, min, max, etc.). When servers
receive word of an instance higher than their px.done value,
they automatically skip any instances they own in between
px.done and the received instance. They do this by main-
taining a map for each other server which lists which in-
stances should be skipped. These messages are then pig-
gybacked (then deleted) onto accept messages (Optimiza-
tion 1 [1]). Skip messages are also piggybacked on propose
messages (these are called suggest messages in Mencius, see
Optimization 2 [1]).

The design and implementation of Mencius was done in close
concert with an iterative design of test-cases to ensure that
we were building a correct protocol. These test cases use
the Lab3A test-cases, but all tests have been modified (some
substantially) and new test-cases have been added. It now
only makes sense to call Start when a paxos server owns seq
(otherwise the paxos server ignores the call), so it is not pos-
sible to have duels with multiple start calls. It is possible to

1



have multiple Revoke calls which duel (see TestRevoke), or
a Start call dueling with Revoke (called a false suspicion in
Mencius). Since non-owners of seq can only propose no-op,
this means a Start/Revoke duel can end with an instance
deciding the proposed value or no-op, and it is no longer
safe to assume an instance will always decide on a particu-
lar value (as would be the case in Lab3A with dueling Start
calls which propose the same value to the same instance).
Moreover, the other labs (Lab4A and Lab4B) were modi-
fied to use Mencius, and it was of utmost importance that
their respective tests still passed. The design and ensuring
correctness for Mencius was a painstaking process, but of
critical importance as it is a fundamental building block for
the remainder of the project.

3. PERSISTENCE
Our system also handles failure by storing data onto disk.
Our data is backed up using SQLite. Using the SQLite
driver for Go, we wrote a suite of APIs to store ShardKV
and Mencius state. In order to satisfy the strict consistency
requirements, we implemented two schemes for persistence.
For ShardKV, we kept a ledger of all the changed values
of the ShardKV table, and ran a background process that
periodically flushed the marked values into disk. For this,
it is necessary to enforce strict all-or-nothing atomicity of
the operations on the values being flushed and the associ-
ated client state. To address this, we made use of SQLite’s
built-in transactions system, and aborted any in-flight trans-
actions at the time of disk failure.

Upon recovery of a replica, we would then load the key-
value pairs back into disk using a similar transactional pro-
tocol. At the time of the benchmarks, we ran a ten-second
checkpointing interval for ShardKV. This process saves the
key-value map, the client-reply map, the processed pointer,
and the current configuration. These are stored in a SQL
record-wise fashion, except configurations which use Go’s
gob encoder to load and store binary blobs. However, this
checkpointing scheme would not work for Mencius because
of the stricter consistency requirements. In the case of per-
sistence for Mencius, we flushed variables to disk as soon as
they were altered in the RAM. This would prove to be a
trememendous bottleneck in our design, as every change in
the paxos variables would incur a write to disk. However,
in order to maintain the consistency of the paxos instances,
it is a part of the latency that we could not remove. Our
bottleneck analysis section will address this issue in more
detail.

4. FAILURE RECOVERY
If a single replica crashes (with or without complete disk
loss), it is able to recover completely and begin serving client
operations. If all replicas crash simultaneously, upon reboot-
ing, they will load data from disk and continue from where
they left off. Handling the case of failure without disk loss is
straightforward if persistence is designed correctly, a replica
can load requisite data from the database on disk; therefore
we limit our discussion here to the case of disk loss.

The naive approach to implementing recovery from disk fail-
ure is to query another peer that is reachable and ask it to
transfer necessary data. This may seem OK at first glance,
but certain pathological cases can arise. Consider a replica

group consisting of replicas A, B and C. Packets to C are
lost because of some type of network partition, but A and B
are still able to serve operations, since they form a majority.
The client sends several put operations, which are then de-
cided by A and B. Replica B then crashes and loses its disk,
and when it returns, it asks C for its disk. Replicas A and
B had previously decided several instances, but being that
B has lost its disk and replaced it with C’s, it is now pos-
sible to re-decide previously decided instances with replicas
B and C, if A were somehow partitioned. This is clearly a
major problem.

In the previous example, if B had instead decided to recover
from A, there would be no problems. This leads one to be-
lieve that it might be possible to pick some type of “most
up-to-date” replica to retrieve on-disk data from. This hap-
pens to also not be possible: B and C may have also decided
some instance that A is unaware of. Our solution to this sce-
nario is simple: when a replica that has lost its disk reboots,
it queries other replicas for their Paxos max (the highest in-
stance they have knowledge of), it then requests that peers
move their Paxos max to the highest such max; once peers
have all processed up to and including at least this high-
est max, we request a disk transfer from any peer. We do
not freeze operations during recovery; when we are waiting
for peers to process operations, we do not care that they
may still be deciding instances, we only care that they finish
processing up to the highest Paxos max therefore, resolving
the possible re-deciding of previously decided instances as
a result of replica disk loss. Figure 1 depicts the recovery
process for a ShardKV server in detail.

We have implemented a new suite of test cases in ShardKV
to convince ourselves that we handle failure recovery cor-
rectly. These tests target specific replica groups (in the case
of single-replica crash tests) by performing puts using keys
targeting the random shards. We then kill one of the replicas
inside of this replica group. Performing puts before, during
and after the crash, and validating that all of these key value
pairs exist on the restarted replica some time after reboot;
this demonstrates that a replica has caught up. In the case
of a disk loss test, the replica also loses its disk (the SQL
databases containing our persistent data) when it crashes.
Separate test cases use larger (100MB) keys with several
GBs of total data in key value pairs. The situation when all
servers crash is simulated by performing a set of puts, killing
all servers and rebooting them, performing more puts, and
ensuring that every individual replica contains data consis-
tent with the puts. The re-decided case described earlier
(with servers A, B and C) is tested by deafening a random
minority of replicas within a random replica group. Large
numbers of puts are then processed by this same replica
group. One of the peers which were not made deaf then
crashes and loses its disk. The entire replica group is made
undeaf and the crashed replica boots up. We check that
all replicas within the replica group contain all previous key
value pairs and that their key value maps are exactly identi-
cal using the reflection package. We ensure that the replica
can’t just “get lucky” and retrieve disk state from a peer
that wasn’t deaf by ensuring that replicas are made deaf in
the same order that a crashed replica will walk the peer ar-
ray to try to retrieve disk state from. Every test also has
its unreliable counterpart where RPC calls and replies are

2



Figure 1: Recovery Protocol

randomly dropped, and all tests perform data consistency
checks across all replicas within the replica group(s) under
scrutiny.

5. DEPLOYMENT
We deployed our system both locally and on the Amazon
Web Service (AWS). There are two branches of our repos-
itory. The main code is the same in two branches. How-
ever, the test code in the master branch is mainly written
to test the correctness of our implementation. The code on
the aws branch is modified such that our system can be de-
ployed across different machines on AWS to test real-world
throughput and latency.

We used Elastic Cloud Computing (EC2) machines to de-
ploy our system. In addition to Mencius, ShardMaster, and
ShardKV, our EC2 deployment framework consists of Su-
pervisor and ClerkServer class. Supervisor acts as a man-
ager of one particular EC2 machine and is responsible for
starting and killing Mencius, ShardMaster, or ShardKV in-
stances via our API interface. In our framework, only one
Supervisor exists in one EC2 machine. The Supervisor keeps
maps of Mencius / ShardMaster / ShardKV it has started
and deletes the instance in the maps on Kill. Supervisor
also supports query of how many requests the ShardKVs
living on the same machine as the Supervisor have served

so far. This RPC is particularly useful when measuring the
throughput of our system.

ClerkServer is similar to Supervisor in that there is only one
ClerkServer per one EC2 machine and it acts as a manager
of that particular machine. The difference is that Clerk-
Server is only responsible for Clerk instances (the ShardKV’s
client). That way, we are able to start many different clerks
on different machines to increase the parallelism of our re-
quests. To support this functionality, we also modified the
Clerk class slightly by creating an additional init() method,
namely MakeClerkServer(). MakeClerkServer() initializes
the clerk and starts a go thread which continuously sends
requests to the ShardKV’s server while it is not terminated.

The setup is illustrated in the following diagram. The Clerk-
Server is omitted for simplicity.

Figure 2: Deployment Setup

We created two test suites to measure the latency and through-
put. The throughput test lives in shardkv test.go file, while
the latency test lives in latency test.go on the aws branch of
our code repository. TestThroughput first proceeds by ini-
tializing the Supervisors. Once all the Supervisors have been
successfully initialized on the EC2 machine, our test suite
contacts all the Supervisors to start the ShardKV servers
and the ShardMaster servers. Next, the test suite initializes
the ClerkServers, which will initialize the clerks who will
start firing requests at ShardKV servers. After some prede-
termined time interval, we stop all the execution and query
the Supervisors for the total number of requests processed
within that period. The throughput is defined as the total
requests processed divided by the time interval.

We measure the latency under 2 conditions: without con-
tention and with contention. Latency is defined as the time
it takes for the client to finish executing one request call.
The setup process of our latency test is the same as that
of the throughput test. For the latency test without con-
tention, we only start one clerk to send requests to ShardKV.
For the latency test with contention, we start many clerks
on several different machines and direct them to send con-
current requests. For both tests, we take a sample of the
latency measurements by polling one of the clerks for its
latency data.

3



6. PERFORMANCE
Our performance is measured in terms of RPC calls made
by our Paxos implementation, and in terms of latency and
throughput of our key-value store deployed on AWS.

6.1 Paxos Performance
We created a benchmarking package specifically to compare
Mencius and Paxos. These benchmarks compare the num-
ber of RPC calls with an increasing number of instances to
decide. These benchmarks also look at the number of RPC
calls under failure of a replica (see Figure 3). We also lever-
age Go’s built-in benchmarking to compare offline perfor-
mance of Mencius and Paxos across the tests from Lab3A.
From our tests, we can see that under normal conditions,
Mencius uses roughly 2/3 of the RPC calls that Paxos does
(the prepare phase in Mencius is skipped). Paxos though
degrades more gracefully under failure than Mencius does.
This is because of a replica fails in Paxos, there are just less
RPC calls (but still a majority of replicas). In Mencius on
the other hand, the instances that were previously owned by
the failed replica now must be revoked by the other replicas,
and revocations constitute of the entire regular Paxos phases
(prepare, propose and decided). The number of RPC calls
under a replica failure in Mencius is still just under those for
Paxos without failures. This is because for some instances
owned by the replicas that have not crashed we are still able
to skip the prepare phase.

Figure 3: RPC Calls

Using the built-in benchmarking package in Go, we tested
the processing time for a variety of Lab3A tests (see Fig-
ure 4). These benchmarks were run locally on a Macbook
Pro. Some of the tests for Mencius were modified for reasons
described earlier which may account for speedup in some
cases. In other tests, the total sleep time eclipses any dif-
ference in performance between the two (e.g., in TestMany-
Forget there is a total of 7 second sleeps). These tests were
run many times, and we show the 95% confidence interval
using the mean and standard deviation of these runs. We
can say from these results that Mencius does not run slower
than Paxos, and that there is a likely performance benefit
in using this optimized Paxos variant.

6.2 System Performance
We created tests to measure the performance of our en-
tire system deployed on AWS. We used compute optimized
machines rather than general purpose machines to utilize

Figure 4: Paxos Performance

a higher network performance (1̃0ms packet latency within
the data center using internal IP addresses). These ma-
chines communicate through Transmission Control Protocol
(TCP). We tested several configurations. However, due to
a limited number of available AWS machines, we are only
able to test up to 4 replica groups. Figure 5 shows the
throughput of our system. Each replica group is deployed
on one machine. There are 3 paxos peers for each replica
group. ShardMaster is deployed on a separate machine, and
is replicated using 3 paxos peers. As we can see in Figure
5, our performance improves as number of replica groups
increases. We have conducted average throughput runs, we
show the 95% confidence interval using the mean and stan-
dard deviation of these runs.

Figure 5: Avg. Throughput w/ Persistence

6.3 Performance Bottlenecks
Our project was implemented with consistency as the fore-
most goal. As such, we found it difficult to relax parts of
our implementation. Upon analysis, we realize that the most
prominent bottleneck piece of our design is in the persistence
of Mencius states. We can see this in the partial persistence
graph below.

Figure 6: Avg. Throughput w/ Partial Persistence

The bottom bar is the throughput we obtain when we turn

4



off all writes to disk. The second bar is the throughput when
we turn on disk writes for ShardKV, and the top bar is the
throughput when we turn on disk writes for Mencius. As we
can see, the ShardKV writes to disk have been optimized
well through the use of checkpoints. However, turning on
the Mencius disk writes causes a severe decline in perfor-
mance because of an inability to batch the continous writes
to disk. In the face of disk writes this frequent, the impact
of network latency becomes less significant. This bottleneck
was something that we could not remove, because we used
a pre-packaged logging structure, SQLite, to broker writes
to disk for us.

Furthermore, the out-of-order nature of paxos operations
makes it hard for the writes to be cache-friendly. Because
of this, we recognize that Paxos might even not be the best
solution to a disk-crash tolerant version of a key-value store.
For future extensions of this system, we recommend 1) not
persisting anything non-essential for recovery from failure
(we are storing some values that optimize recovery time
but perhaps unnecessary. like Mencius skipped instances
which are later piggybacked), and 2) the study of a more
lightweight, cache-efficient logging system.

Figure 7: Avg. Latency w/ No Contention

Another part of our system bottleneck is the contention be-
tween clerks. Contention happens when there are multiple
clerks issuing Puts/Gets to the same ShardKV group. The
effect is most pronounced when we are measuring the latency
with multiple clerks, as shown in Figure 8. The horizon-
tal axis indicates the average request latency in milliseconds
and the vertical axis indicates the clerk group size. As we in-
crease the clerk group size, the contention increases, which
in turn increases the average latency of our system. One
possible way to reduce contention is to increase the number
of replica groups to service more clerks. Another solution
is to implement a more sophisticated ShardMaster which
dynamically rebalances shards based on observed hotspots.

Figure 8: Avg. Latency w/ Contention

7. CONCLUSIONS
As seen in the Performance section, our system can be eas-
ily scaled to handle large volumes of data, if we increase
the number of replica groups. However, to drastically im-
prove the performance, we would have to relax consistency
guarantees of our system, particularly in our Paxos imple-
mentation.

8. REFERENCES
[1] Y. Mao, F. Junqueira, and K. Marzullo. Mencius:

Building efficient replicated state machines for WANs.
OSDI, pages 369–384, 2008.

[2] Y. Mao, F. Junqueira, and K. Marzullo. Mencius:
Building Efficient Replicated State Machines for
WANs. Technical report, 2008.

5


