
Two Phase Commit on Persistent Key Value Store with
Data Replication

6.824 Distributed Systems Final Project

Xiangyao Yu
Massachusetts Institute of Technology

32 Vassar Avenue
Cambridge, MA

yxy@mit.edu

Shuotao Xu
Massachusetts Institute of Technology

32 Vassar Avenue
Cambridge, MA

shuotao@mit.edu

ABSTRACT
We implemented a distributed transaction processing sys-
tem where data is partitioned and mapped to different shards.
All shards are replicated to enhance the availability and
durability of the system. The database model is simple
key-value store inherited from Lab 4. The objectives of
the project are 1) to process transaction using two phase
commit and guarantee atomic execution, 2) to persistently
store data and server status on disk to tolerate server fail-
ures. The requests of a transaction consist of GET, PUT,
and ADD. To simplify implementation, the only scenario of
aborting a transaction is that it has an add request that
results a negative value. Firstly, we implemented a coarse-
grained locking scheme where a transaction locks the groups
it touches. In order to achieve better performance gains, we
later refined our system with a fine-grained locking scheme
where a transaction locks the keys it touches. Secondly,
we implemented test cases to verify the correctness of the
system under different failure scenarios including unreliable
networks and server failures. Lastly we benchmark our sys-
tem with synthetic workloads that varies with parameters
like distribution of number of groups a transaction accesses,
read/write ratios of a transaction, number of clients and so
on.

1. IMPLEMENTATION DETAILS
Our persistent key value store is constructed such that

each key of type string is mapped to a value of type in-
teger. We confined the type of values to integer to allow
arithmetic operations on the key-value pairs. The data of
our systems are partitioned into different shards. A group
of servers are responsible for a distinct subset of shards,
and all the data within a group are replicated. Our system
supports atomic transactions, where a transaction is an or-
dered group of requests such as puts, gets and etc. We also
support persistency, where all committed transactions are
recorded to disk. Our persistent key-value store can model
applications like an inventory management system or a bank
account system.

1.1 Transaction Support
Our system supports transaction consisting of requests of

PUTs, GETs, and ADDs.

• a PUT updates the value associated with the key

• a GET returns the value associated with the key

• an ADD adds a value (could be negative) to the pre-
vious value associated with the key

In particularly, the transaction support of our system en-
sures the following properties.

Consistency Our system allows multiple clients to send
transactions concurrently. Specifically, our database enforce
sequential consistency such that the effects of concurrent
transactions appears as some sequential order. To enable
sequential consistency, the client should lock the groups that
a transaction touches before execution. And since we will
have multiple servers within each group, we will ensure con-
sistency inside the group with Paxos, to guarantee a global
ordering of the operations within a group.

Atomicity The transactions need also be atomic, i.e. ei-
ther all of the requests of the transaction are executed or
none are executed. We ensure atomicity of the transaction
with two phase commit protocol.

Persistency All the effects of a committed transaction
on key value store are written on disk.

Fault-tolerant Our system ensures the transaction pro-
cessing is fault-tolerant. On the server sides, the Paxos im-
plementation in Lab 3 has already ensured tolerance under
network failures. In our project, we will modified Lab 3 such
that Paxos can also handle server crashes. On client side,
we will also record its transaction processing status on disk,
so that after crash, the client will know at which point it
was processing the transaction.

1.1.1 Persistent Paxos
We made the Paxos persistent so that it can tolerate server

crash.
Whenever any of the propose number(n p), accepted num-

ber(n a) and accepted value(v a) is modified, all of them are
written to the file system with the file name in the following
format: SERVERNAME INS#.txt.

When the Paxos log is truncated, the corresponding files
are also deleted. When a server reboots after failure, it
will reconstruct the Paxos instances by reading from the file
system. We use a lazy reconstruction approach where an
instance is read and reconstructed only when it is touched.

Moreover, we added a new function call, Poll(seq int), to
the Paxos, to peek the status of a Paxo instance at some

1



sequence number. When Poll(seq int) is called, the Paxos
server first checks locally if the Paxos instance of sequence
number seq has been decided (by calling Status()). If not,
RPCs are sent to peer servers and the status of the instance
is returned. Note that Poll() is different from Status() since
Status() only checks the Paxos instance on local server.

Poll is used to check whether a particular instance has
been decided. This simplifies our system implementation as
explained in Section 1.1.2.

1.1.2 Locking Scheme
We uses locking to ensure sequential consistency of con-

current transactions.
Transactions are initiated at the client side. A client

breaks down a transaction, and sends the requests to a server
in the corresponding group. Upon receiving the requests, the
server will start a Paxos instance to agree on the transac-
tion. This Paxos instance also does the proper locking for
the transaction to guarantee mutual exclusive.

To avoid deadlocks, the clients should send requests to
the groups sequentially following a fixed order, such as the
order of increasing group IDs. Groups with larger gids are
locked only after groups with smaller gids are locked. This
prevents the scenario where two transactions each locks a
group and requests to lock the other’s group.

In our implementation, locking can happen in two differnt
granularities, per-group locking and per-row locking.

In per-group locking, a transaction locks a whole group if
any data in that group is touched (read or write). Another
transaction can only access the same group until the first has
released the lock. The advantage of this implementation is
its simplicity. But the performance is sacrificed since only
one transaction can access a group at any time.

In per-row locking, a transaction only locks the rows it
needs to access. Two types of locking are supported: shared
lock for GET requests and exclusive lock for PUT or ADD
requests. Multiple GET requests from different transactions
can share lock the same record at the same time. When
a transaction reaches a group, it will first try to lock the
records it will access within the group. If any lock fails, no
lock should happen and a lock failure message is replied to
the client. Compared to per-group locking, this approach
exploits much more concurrency and should provide higher
performance (section 2)

To tolerate failures, we have Paxos handle failures on
server side. On client side, when a transaction starts, the
client will record its status as started on disk. When all
groups are properly locked, the on-disk status of the client
changes to locked.

The servers will periodically use Poll() to catch up in the
Paxos log with other replicas. Otherwise, there is possibility
that some of the servers will be left far behind in the Paxos
log and take a long time to catch up. For example, after a
client locks a server for a transaction, it seeks other servers
to execute two phase commit in Section 1.1.3. Later the
client send request to this server to lock for a new transac-
tion. That server still grabs lock from previous transaction,
rejects the new transaction request and waits for the prepare
message of previous transaction, which will never come. In
this case, the server stalls, and the new transaction can not
proceed.

This is the first step of transaction processing from client’s
perspective, we call it insert transaction.

1.1.3 Two Phase Commit
After client hears from all groups that the servers have

been properly locked for the transaction, it initializes two-
phase commit(2pc) protocol[1] as described in fig. 1, where
the records with * are written into non-volatile storage.

Figure 1: Two Phase Commit Protocol

The client will first send prepare messages to all the groups
that a transaction involves in parallel to make sure the trans-
action can be executed. The servers pre-run the transaction.
And if there is an ADD request that results negative in-
teger, it responses abort. Otherwise, the server responses
prepare ok. The client waits for all prepare responses from
different groups. And depends on the prepare messages,
client 1) sends out reply to application and 2) either sends
out commit or abort message to servers. After servers sees
commit, it will write the result of the transaction into per-
sistent storage.

As shown in Figure fig. 1, two-phase commit requires the
coordinator(client) to write once to the persistent storage
(commit/abort) and subordinate(servers) to write twice to
the persistent storage (prepare ok/abort and commit/abort).
In our implementation, the server always need to make con-
sensus on those two messages through Paxos. Since our
Paxos is already persistent, two phase commit is automati-
cally achieved at the server side.

At the client side, we added an extra disk operation to
make the state of the current transaction persistent. When
a client reboots, it will first read the disk for the latest state
before it crashed and repeat the last operation if necessary.

The servers, on the other hand, should passively wait for
the clients requests to insert Paxos instance. So it does not
have to recover the states up to date immediately. We take
a lazy approach to recover the servers: only replay Paxos
log and recover the states when the incoming request de-
pends on it. For example, a server after reboot may receive
a commit request without knowing the result of the trans-
action. It will replay the Paxos log at this point and read
the transaction results from the log and serve the commit
request.

The prepare and commit phases in 2pc are the second and
third steps of transaction processing from client’s perspec-
tive.

1.2 Testing
We implemented various test cases to make sure our im-

plementation works correctly. In general, our tests fall into
two categories: transaction testing and 2pc testing.

1.2.1 Transaction Support
This test is to make sure that our database satisfies atom-

icity and consistency, i.e., the requirement of the notion of

2



transaction. For atomicity, we need to make sure that a
transaction either completely commits or completely aborts.
Partial transactions are not allowed. For consistency, the
database should support multiple clients sending requests
concurrently and the results are equivalent to some order of
sequential execution. We designed the following test cases
accordingly.

Test 1 A single client sends requests to three groups of
servers where each group contains 3 servers. One of the
requests will add a negative value to the database to make
record less than 0 and thus should abort. The test verifies
that all the changes of the aborted transaction are rolled
back. Both reliable and unreliable networks are tested.

Test 2 Initially, each group has a record with value 10.
Three clients send requests to all the 3 groups to add -1 to
the corresponding record. Within a certain transaction, the
values returned from all the groups should be the same. And
values returned by different transactions should be different.
Both reliable and unreliable networks are tested.

1.2.2 Two Phase Commit
To test that our two-phase commit protocol is correct we

need to manually crash the system at different point and re-
boot the system to see if it can still run properly. A failpoint
parameter is passed into both the client and the server when
the transactions run. When the machine(client/server) runs
into the position indicated by the failpoint, the machine
should delete all the information stored in the main memory.
The data stored on the disk, however, is preserved.

After faiure, the Reboot() function in either the client or
the server is called to recover the process. And if the system
is correctly implemented, all the transactions should behave
properly.

The following failure points are considered in the test and
they are tested individually.

Client Side
Case 1: Client fails after locking all the groups but before

sending out prepare requests.
Server Side
Case 1: Server fails before writing the prepare record to

disk.
Case 2: Server fails after writing the prepare record to

disk but before replying the to the client.
Case 3: Server fails after replying the prepare state to the

client.
Case 4: Server fails after writing the commit record to

disk but before replying to the client.
Fianlly, we also tested the persistent database storage.

In this test, the system is first loaded with data and then
the whole system crashes. After reboot, the system should
recover all the missing data by reading from the disks.

2. PERFORMANCE RESULTS
In this section, our system is evaluated in several different

aspects. In particular, we will first evaluate the overhead
of using paxos to reach consensus within a group. Then we
evaluate the overhead of disk operations in our 2PC. Finally,
we compare the two concurrency control schemes introduced
in section 1.1. All the experiments are carried

2.1 Overhead of Paxos
To evaluate the overhead of paxos protocol between repli-

cas, we assume a single client and a single group. In the first

w/o Paxos w/ Paxos Persistent0
1
2
3
4
5
6
7
8

Th
ro

ug
hp

ut
 (t

xn
/s

)

Figure 2: Performance overhead of paxos protocol
and persistent storage.

Group Locking Per-Row Locking0
1
2
3
4
5
6
7
8

Th
ro

ug
hp

ut
 (t

xn
/s

)

Figure 3: Performance comparison between differ-
ent locking granularity.

case, the group contains only a single server which processes
the request alone. In the second case, the group contains
three servers and each request should go through the paxos
protocol. The difference between the performance (fig. 2)
shows the overhead of paxos protocol.

fig. 2 also shows the overhead of writing the records to
persistent storage in order to tolerate system crashes. It
turns out that the disk writing overhead is smaller than the
overhead of paxos protocol.

2.2 Locking Granularity
fig. 3 shows the performance comparison between per-

group locking vs. per-row locking. The experiment involves
three clients and three groups with three servers in each
group. The database contains 1000 records. Each trans-
action uniform randomly touches six records, two in each
group.

Clearly, per-row locking significantly outperforms per-group
locking. Per-row locking allows two transactions to run con-
currently as long as their data sets do not overlap. In our
setting, most transactions access disjoint sets of data which
is the best scenario for per-row locking.

3. DISCUSSION
To summarize, our project is built on top of Lab4. We

enhanced the pure key-value storage engine to a transac-
tional processing engine. Then, persistent paxos and per-
sistent data storage are added. And two-phase commit is
supported on top of these.

We also implemented various test cases to verify the cor-
rectness of our implementation. Finally, we evaluated the
performance of our system and studied tradeoffs in different
design decisions.

From the project, we learned that Paxos is a very ex-
pensive protocol that it supersedes all overheads of 2pc and
disk operations. In the future, optimization could be done
on Paxos, to further increase our system’s performance.

4. REFERENCES
[1] C. Mohan, B. Lindsay, and R. Obermarck. Transaction

management in the r* distributed database
management system. ACM Transactions on Database
Systems, 11:378–396, 1986.

3


