
Speedy : a Sybil-resistant DHT implementation*

anquan Liu, Qian Long, Pratiksha aker, Wenting Zheng

May 12, 2014

1 Introduction
Distributed hash tables (DHTs) are common services that leverage peer-to-peer (P2P)
communication to provide a distributed key value service across nodes in a network.
e tasks of nodes in a distributed hash table include storing key/value pairs and pro-
viding values for lookup requests or rerouting requests to other nodes. A public DHT
should be able to handle nodes joining and leaving arbitrarily, and provide efficient
lookups, key inserts, and value modifications.

A classic vulnerability in such a network is a Sybil aack, in which a an adversary
is able to introduce malicious nodes, which do not adhere to specified protocols, into
a network . Specifically, by introducing a large number of these malicious nodes with
fake identities, the adversary is able to disrupt system operation by responding to
queries with incorrect information; maintaining an incorrect routing table, delaying
queries; strategically placing nodes in an aempt to construct a snapshot of the entire
network’s data, possibly subverting security properties; or a number of other potential
aacks.

In this project, we designed and implemented aDHT tomitigate some Sybil aacks
and provide data consistency, while minimizing the number of hops for a lookup,
given certain assumptions about the underlying P2P network. Our implementation
is based on theWhānau routing protocol [LLK10], but includes a layer of indirection
to allow key operations to be coordinated using Paxos, as well as basic key signing to
provide data integrity.

2 Related work
Past projects including SybilGuard [Yu+06], SybilLimit [Yu+08], andWhānau [LLK10]
have examined this problem in the context of fast-mixing social networks, with spe-
cific restrictions on the structure of the resulting graph. iswork primarily addresses
aacks in which malicious nodes delay or re-route queries; data integrity problems
are assumed to be handled by the client via signatures or another verificationmeasure.

*hps://www.github.com/wzheng/speedy

1

As in previous work, we assume that the underlying graph is a social network.
As shown in [LLK10], this allows us to assume the honest region is fast-mixing and,
assuming that creation of a link between honest and Sybil nodes is difficult, there
exists a sparse cut between the honest region and the Sybil region.

3 Design
We separate our design into two ”layers”: the routing layer, based on [LLK10], and
the consistency layer, composed of multiple clusters of servers which coordinate key
operations using Paxos.

3.1 Routing protocol

For the routing part, we use the original Whānau protocol as presented in [LLK10].
In this ”layer”, each key is matched with list of nodes that comprises of the Paxos
cluster responsible for that key. In our design, we call these key/value pairs, where
value is a list of server names. e true value of the key is replicated across the nodes
in the paxos cluster, which is explained in the next section. e routing protocol is
responsible for retrieving the Paxos cluster assigned to a key, which we will refer to
as the ”value” for the remainder of this subsection.

e Whānau protocol relies heavily on random walks and random sampling to
build up its routing tables. Because of the sparse cut assumption in our network
model and the fast mixing properties of the honest node region, random walks from
any node are likely to stay within the honest region unless the node is part of the sybil
edges.

Each node maintains a local key/value store for the keys that are inserted from
this node. Each key in the local kv store will get assigned a Paxos cluster value as
explained in secton 3.3. Aer this assignment, each node creates an intermediate
key/value store, called db, that contains rd samples of key/value pairs collected from
random walks on the network. e Whānau protocol introduces the idea of layers of
routing tables provably useful for mitigating some Sybil aacks [LLK10].

In each layer, there are three routing tables created: id, fingers, successors. e
id for a layer is used to identify the node; it comes from the keyspace. is is cho-
sen randomly from the db for the first layer and chosen randomly from the previous
layer’s fingers in subsequent layers. e fingers contains rf (id, server) pairs that act
as pointers to other nodes in the network for routing. e fingers are chosen from
taking random walks on network. e successors contains records that follow the id
in the keyspace. e successors are built up by taking rs randomwalks and collecting
the records close to the current layer’s id from each of the random walks.

e routing table setup outlined above builds a static routing table on each node in
the network with sybil aack resistant properties explained in [LLK10]. In order to ac-
count for new inserts into the DHT, this routing table setup must happen periodically
so that the DHT can be up-to-date.

2

3.2 Replication and consistency

e Whānau protocol naturally results in a large amount of replication, but does not
specify consistency guarantees or a protocol for key inserts and value updates. Speedy
trades this large amount of replication for stronger consistency guarantees by creating
Paxos clusters within the DHTwhich store the values for each key, rather than storing
them in the Whānau routing tables. is gives us two advantages: first, very large
data values will not be excessively replicated, which would otherwise use up large
amounts of storage space; second, concurrent updates and node failures are resolved
through the master clusters, which will be explained in section 3.6.

e Paxos cluster for each node is chosen by using random walks. Given user de-
fined PaxosSize, Speedy uses PaxosSize− 1 random walks to construct the Paxos
cluster. Each server’s paxos cluster is constructed during the SETUP stage. Each
server, once it enters the set up stage, will perform random walks in order to find
PaxosSize− 1 servers. e server then starts a two phase commit with those nodes
in order to form the Paxos cluster.

3.3 Setup

Because the routing tables created in the Whanau Protocol are static, the setup steps
must happen periodically to account for key churn and node churn in the network.

Setup works as follows for one node

1. For every key in a node’s queue, ask the Master cluster to assign a Paxos cluster
for it. is populates the local kvstore.

2. Build up routing tables using the Whanau Protocol

3.4 Lookup

e following outlines a lookup for key k.

1. Look in local kv store to find the Paxos cluster for k, if not found, follow the
steps below to look for it.

2. Randomly choose a layer, and randomly choose a finger, nf in that layer close
to the key.

3. Look in the successors of nf .

4. Repeat steps 2 and 3 until found or time out. e high level of replication in
the protocol ensures that it will usually take 1 hop to find the Paxos cluster of
a key.

5. Now that we have the Paxos cluster of k, we use the Paxos protocol within the
nodes in the cluster to agree on the true value to return to the client.

3

3.5 Dynamic updates

Storing true values in Paxos clusters naturally allows support for dynamic value up-
dates: a Put operation is simply routed to the appropriate cluster, and the servers
involved come to a consensus on the ordering of the operation in their logs. is also
addresses the potential concern of two different clients aempting to update the value
of the same key concurrently. In this way, clients need not wait for a Setup round to
see the effect of their value operations.

3.6 Dynamic inserts

Inserting new keys is slightlymore involved than value updates, as the construction of
routing tables in Whānau depends on knowledge of the existing keys in the network.
To address this, we assign a certain set of servers to be ”master” servers, which also
coordinate operations using Paxos. ese master servers are pre-determined before
the very first setup, and therefore do not change in the later setup stages. All of
the servers in the DHT know of these master servers. When an insert happens, it
becomes a pending insert. is has to happen because Whānau cannot handle new
inserts until a new setup is run. erefore, each server processes these new inserts by
sending that information to a random master node. e master node is in charge of
initiating a paxos call to the other master servers and decide on which server to send
the pending insert.

Aer the master servers agree on a key-server mapping, all subsequent pending
inserts will always be sent to that server. is Paxos operation takes care of concur-
rent inserts to the same key by multiple servers. Note that one master server could
solve the problem, but we have multiple master servers in order to make Speedy more
tolerant. Also note that masters are only used for insert operations, and only have
limited powers.

3.7 Fault tolerance

Whānau provides fault tolerance through large amounts of replication. Our imple-
mentation maintains this at the routing layer, but the fault tolerance properties at the
data layer are somewhat less obvious; we informally discuss them here.

We use O(logn) replicas in each Paxos cluster, each selected by a random walk
of length O(logn), in order to ensure that each cluster has a constant number of
honest nodes, where n is the total number of honest nodes in the DHT [LL10]. Each
Paxos cluster is responsible for one key; the clusters are constructed and the keys
assigned at Setup time. If a node fails, it can no longer participate in consensus in any
Paxos cluster it is a part of. However, even correlated node failures will not result in
correlated Paxos failures; since clusters are created using random walks, the effects
of node failures will be ”distributed” over many Paxos clusters.

Fault tolerance in the routing layer (in particular, the effects of Sybil nodes which
may re-route queries) is the same as described in [LLK10].

4

3.8 Data Integrity

In addition to fault tolerance and consistency, Speedy also provides some data integrity
guarantees. In a public DHT, Sybil nodes could constantly update new values for
existing keys. ere is no good way to know whether a particular put operation
inserted an “incorrect” value because we cannot tell whether a node is malicious or
not. We can only provide a guarantee that a particular value will always be tracked
back to the node that executed that put operation. is information could then be
used in a reputation system for this public DHT. e reputation system is outside the
scope of this project, so we will only provide an explanation for a method for ensuring
data integrity.

In our data integrity model, each node in the network has a secret key and public
key. We refer to the originator as the node who performs the put request. When
a (key, true value) is inserted, the originator signs a concatenation of (true
value || originator ip address || originator public key) with its
secret key. e originator then concatenates the true value, originator ip address,
signature, and his public together as the new true value of the key. If a node does not
include all of the valid information, then its put request will be rejected.

During a lookup, aer the true value is retrieved from a Paxos cluster, the receiving
node can verify the integrity of the data by verifying the signature with the aached
public key.

Note that this scheme does not provide any confidentiality because the original
value is always stored in plain text. erefore, a malicious node can always take
someone else’s value and sign with its own secret key. Information requiring con-
fidentiality should be encrypted using public key encryption, and it should be taken
care of on the client side.

Sybil nodes could potentially try to imitate an honest node by signing with its
secret key, but then say that the information came from an honest node’s IP. is
problem can be solved by requiring the originator IP address to be included in the
true value so that any node can ask the originator for its public key to check with the
one that is aached.

Of course, sybil nodes can still coordinate with each other to verify each others
public keys. In this case, we can build a reputation system to keep track of suspicious
nodes. For example, if the data received is a virus, then that ip address/public key pair
will get a low ranking in the reputation system. More research is needed in this area,
but we believe that our scheme is a good start for providing some basic data integrity
in Speedy .

4 Performance

4.1 Setup: systolic mixing

A boleneck in our implementation was the overhead in sending out many random
walks throughout the Setup process. To mitigate this, we implemented the ”systolic
mixing” process suggested in [LL10], in which random walks are precomputed by
flooding the network with node addresses and shuffling them at each time step. is

5

reduced the time for Setup with large numbers of servers (over 100) to less than 10%
of the time it took using recursive random walks.

4.2 Whanau Lookup hop count

e Whanau Protocol guarantees a one hop lookup with high probability [LLK10].
Recall in Speedy , the whanau lookup is the first part of the protocol where we look
up the Paxos cluster responsible for a key. One hop means that we do steps 2 and 3
of the Lookup Protocol (3.4) from the node issuing the request. If that fails, we hop to
another node (via random walk) and try again.

We tested this claim experimentally using a 100 node network that is well con-
nected and 5 pre-inserted key/value(Paxos cluster list) pairs per node, giving a total
of 500 keys in the network.

Aer one setup phase, we performed the Whanau Lookup from every node on
every key and count the number of hops in each Whanau lookup. is is 100 · 500
lookups in total. Results from 5 trials show that an average of .5 percent of all the
Whanau Lookups required more than 1 hop. is shows good empirical evidence for
the 1 hop lookup claim.

Furthermore, we test the claim on different network structures to observe the ef-
fect. We construct network graphs where each node has a probability P of being
neighbors with any other node in the network. P is referred to as the edge probabil-
ity in the table below. Once again, we use a 100 node network of honest nodes with
500 total key/value pairs. We see that the one-hop lookup claim holds up to small
numbers of edges, at which point the number of lookups requiring more than one
hop increases slightly but is still quite low.

Edge Prob Fraction of Successful Lookups needed > 1 Hop Total Lookup Success
1.0 0.004 1.0
0.9 0.006 0.99
0.8 0.003 1.0
0.7 0.004 1.0
0.6 0.0019 1.0
0.5 0.005 1.0
0.4 0.007 1.0
0.3 0.0037 1.0
0.2 0.004 .998
0.1 .0094 .998

5 Future work
We have implemented the Whanau protocol as it is described in [LL10], including a
layer of indirection to provide data consistency as well as a layer of key signing to
provide data integrity. However, our implementation requires a set of master nodes,

6

which could turn into a boleneck and increase latency significantly; future work
might involve distributing the work of the master nodes further.

We would also like to do correctness and integrity testing on a much larger scale
to determine how many node failures our system can tolerate. Furthermore, we have
not yet tested our system with significant changes to the graph structure in between
Setup phases, although we believe we have increased its robustness to such changes
by adding Paxos logging so that nodes leaving the network nevertheless allow the
remaining nodes to agree on operations.

References
[1] Frank Li, Prateek Mial, Mahew Caesar, and Nikita Borisov. “SybilControl:

practical sybil defense with computational puzzles”. In: Proceedings of the sev-
enth ACM workshop on scalable trusted computing. ACM. 2012, pp. 67–78.

[2] Chris Lesniewski-Laas andMFrans Kaashoek. “Whanau: A sybil-proof distributed
hash table”. In: 7th USENIX Symposium on Network Design and Implementation.
2010, pp. 3–17.

[3] Christopher T Lesniewski-Laas. “Design and Applications of a Secure and De-
centralized DistributedHash Table”. PhD thesis. Massachuses Institute of Tech-
nology, 2010.

[4] Haifeng Yu, Phillip B Gibbons, Michael Kaminsky, and Feng Xiao. “Sybillimit: A
near-optimal social network defense against sybil aacks”. In: IEEE Symposium
on Security and Privacy, 2008. IEEE. 2008, pp. 3–17.

[5] Haifeng Yu,Michael Kaminsky, Phillip BGibbons, andAbrahamFlaxman. “Sybil-
guard: defending against sybil aacks via social networks”. In: ACM SIGCOMM
Computer Communication Review 36.4 (2006), pp. 267–278.

7

