6.824 Project Report [Default Project]

May 11, 2014
Peter Krafft, Jeremy Sharpe, Andrew Wang

We extended Lab 4 to handle server crashes and restarts with and without losing disk. We
implemented the Mencius protocol to optimize Paxos agreement, and we tried to handle a large
KV store by keeping important data structures on disk. In this report, the first section presents
our design for these features. The second section describes the additional test cases we aimed
to pass. The final section shows our benchmark analysis.

1. Design

Our code base is built on top of Lab 4, which includes the Paxos, Shardmaster, and ShardKV
packages. We assume the Shardmaster is reliable, so we apply our modifications to the Paxos
library and the ShardKV state machine. Handling persistent state is relevant to both components.
The Mencius protocol mainly affects Paxos, plus minor changes to how ShardKV accesses
underlying Paxos instances. Finally, dealing with large data requires proper memory
management within both Paxos and ShardKV.

To recover from crashes, we identified the Paxos and ShardKV state necessary for continued
operation. Wherever this state is updated in memory as part of an operation, we atomically
commit it to disk too. When we Kill a server, we either wipe the disk or keep it around, and during
restarts, we check whether a disk is available, whether locally or from a peer.

The relevant Paxos state includes the done vector and individual instances. A Paxos peer’s done
vector enables forgetting by listing the latest minimum instance it knows about everyone. Both
the proposer and acceptor threads update this state, and therefore write it to disk, each time they
send or receive an RPC. Each Paxos instance also contains both proposer and acceptor state,
but only the acceptor state needs to be saved for correct recovery. The proposer state doesn’t
need to be saved because Paxos peers can always reissue smaller proposals again.

Our ShardKV state machine maintains four pieces of state, which are updated by the operations
get(), put(), and reconfigure(). First, we keep track of which configuration we are operating in.
This is updated only by reconfigure(). Then, the actual KV state includes the key-value map and
the client state for each shard, plus the execution point in the log this state reflects. All operations
must update this state. Even when processing a duplicate client request, it occupies a space in
the log, so the execution point must be incremented. Finally, our Lab 4 design kept old shards to
be transferred during reconfiguration, in case the receiving group was slow to reach that
reconfiguration.

During server restarts, disk recovery is initiated from ShardKV. If StartServer() finds that its local
disk is not empty, it simply continues with loading ShardKV state, and it initiates its local Paxos



to do the same in Make(). But if its local disk is empty, then it must copy disk from a peer in its
group. StartServer() cycles the request through all its peers, until someone confirms a
successful disk transfer. It is important that both ShardKV and Paxos state are transferred
together, since the state machine is tied to what the local Paxos has proposed or learned about.
When a peer receives a disk transfer request, it must halt all operations to prevent them from
modifying disk during disk transfer.

There is the special case of initial startup when no one has any disk state. Peers will still try to
request disk from each other, but in this case they may explicitly reply that they have no disk to
offer. Only when all other peers have responded as such, may one assume a clean initialization.

With persistent Paxos and ShardKV in place, we implemented “round-robin” Mencius to reduce
the number of RPC messages. Our implementation is based on the OSDI 2008 paper; the rules
and optimizations in sections 4.3 and 4.4 served as guidelines for modifying our Paxos library.
The additional required Paxos state for a peer are a pointer to the next log instance it owns, the
list of instances it may skip, and whether it thinks its other peers have failed. For persistence,
this state is maintained similarly as the rest of the Paxos state.

In Mencius each peer issues implicit Prepares on all the instances that it owns. Therefore, it may
send Accepts directly on those instances, saving an RPC round trip. We simulate the implicit
Prepares by initializing instances with a non-zero proposal number. Because each peer’s
subsequent Accepts jump over several instances, and peers operate asynchronously, holes
may appear in the log. Mencius avoids this bottleneck by allowing peers to skip their next
instance if they have heard about another peer’s proposal on a higher instance. When a peer
skips one of its owned instances, it inserts the instance number in its skip list, promising to issue
only a No-op for that instance. This sKkip list is piggy-backed and gossipped on all RPCs, so
when other peers hear about it, they may incorporate it into their own list and immediately apply
the No-ops.

The remaining piece of our Mencius implementation is dealing with peer failures. Failed peers
can no longer issue skips on their instances, so other peers have to take ownership of them.
Each peer must independently detect others’ failures. This is accomplished by gossipping each
peer’s next instance number through the RPCs as well. When a peer’s own instance number
has advanced too far beyond another peer’s advertised number, it assumes the other peer has
failed, and it proposes No-ops on that peer’s instances. Regular Paxos is required here because
all peers are performing failure detection independently, which may not be reliable, and a peer
that is supposedly dead but actually alive needs to be able to issue its own Accepts.

The last piece of our project is to handle a large KV store that would not fit in memory. We
assume each shard is not unreasonably large, and adapt Lab 4 to accept a large variable
number of shards. Since the full KV store will not fit in memory, we must store all shards on
disk. In absence of an in-memory cache, for every operation in ShardKV, we have to load a



shard from the disk, and save it back when we are done. We assume shards are small enough
that reading/writing a single shard is fast.

2. Test cases

We extended the tests of labs Paxos and ShardKV to verify the correctness of our added
features. Most of our tests centered around persistence. We hand designed a number of failure
scenarios for both Paxos and Shardkv, and we also had a number of other tests that
incorporated random failures and restarts. Our basic cases tested whether servers who
crashed and restarted but kept their disk would remember the correct information that they had
before crashing. Our more complicated cases tested failures with and without disk loss that
occurred during agreement and reconfigurations. We also modified many of the original test
cases, such as testing many concurrent operations and unreliable network connections, to
include random failures and restarts. In these test, peers failed with probability 0.1 about every
100 milliseconds and recovered with probability 0.9 10 milliseconds after they crashed and with
increasing probability longer periods of time after they crashed. Failed peers also lost their disk
contents with probability 0.1, but we constrained the tests so that only one peer from each group
would lose disk in each test. Our persistent and low-memory implementations passed these
tests successfully.

We also tested Mencius and large amount of data with less success. Our Mencius
implementation was able to pass all the original Paxos tests, and some of the original ShardKV
tests, but it had some trouble with persistence. Our low memory implementation of ShardKV
had a memory leak which made large amounts of data difficult to deal with. Even though the
Paxos log was deleting instances and the shard data structures in ShardKV were empty, the
memory usage of our implementation still grew too quickly.

3. Benchmark analysis

By running our code through go’s pprof tool, we found that the most cpu time and memory
allocation are spent in gob encoding/decoding and the RPC library. (See Appendix A.1.) Not only
does RPC use gob, but our persistent implementation also uses gob to read and write disk. The
the gob library accounts for the bulk of the processing, even the when we are not keeping
persistent state.

Our Mencius implementation reduced the RPC count significantly. Running the RPCCount test
reported 2224 RPCs for plain Paxos versus 1048 for Mencius.

The two figures below plot latency over throughput, comparing plain Paxos against the use of
persistence and Mencius. Without persistence, Mencius has at least slightly higher performance



than plain Paxos. Though the difference is slight, Mencius’s latency is consistently lower, and it
is able to sustain higher throughput before bottlenecking, at nearly 150 ops/sec vs around 130
ops/sec. With persistent state, however, the tables are turned. Mencius’s latency is now 20-30
ms longer than Paxos’s, and it bottlenecks at just over half the throughput. Persistent Mencius
requires additional state to be saved, and in additional functions, at the Paxos level, where most
of the RPCs are occurring. Comparing the two plots, one sees the simple addition of writing to
disk causes latency to rise by a factor of at least 2 to 3, and the max throughput is

correspondingly decreased.

Without persistence

M

w
o

)
LN

[
=]

=& plain paxos
== mencius

Latency (ms)
|—'I.
L

s
=

i

=

0 50 100 150 200
Throughput (ops/sec)




Latency (ms)

140
120

3

80
60
40
20

With persistence

/ —#— plain paxos
—

== mencius

10 20 30 40 50
Throughput (ops/sec)

A. Appendix

A.1. pprof output

(pprof)
Total:

top50 -cum

4527 samples

0 0.0% 0.0% 2397 52.9% System

0 0.0% 0.0% 2129 47.0% runtime.goschedO

1 0.0% 0.0% 1252 27.7% encoding/gob. (*Decoder) .Decode

3 0.1% 0.1% 1247 27.5% encoding/gob. (*Decoder) .DecodeValue

1218 26.9% 27.0% 1225 27.1% syscall.Syscall

9 0.2% 27.2% 1121 24.8% encoding/gob. (*Decoder) .decodeValue

2 0.0% 27.2% 887 19.6% encoding/gob. (*Decoder) .decodeTypeSequence
3 0.1% 27.3% 853 18.8% encoding/gob. (*Decoder) .getDecEnginePtr

18 0.4% 27.7% 809 17.9% encoding/gob. (*Decoder) .compileDec

1 0.0% 27.7% 787 17.4% encoding/gob. (*Decoder) .recvType

0 0.0% 27.7% 778 17.2% net/rpc. (*Server) .ServeConn

0 0.0% 27.7% 740 16.3% net/rpc. (*Server) .ServeCodec

0 0.0% 27.7% 691 15.3% net/rpc. (*Server) .readRequest

234 5.2% 32.9% 663 14.6% runtime.mallocgc

3 0.1% 33.0% 593 13.1% net/rpc. (*Client) .input

17 0.4% 33.3% 588 13.0% encoding/gob. (*Decoder) .decOpFor

0 0.0% 33.3% 414 9.1% net/rpc. (*gobClientCodec) .ReadResponseHeader
1 0.0% 33.4% 379 8.4% net/rpc. (*Server) .readRequestHeader

1 0.0% 33.4% 374 8.3% net/rpc. (*gobServerCodec) .ReadRequestHeader
28 0.6% 34.0% 368 8.1% runtime.new

0 0.0% 34.0% 350 7.7% encoding/gob. (*Encoder) .Encode




3 0.1% 34.1% 347 7.7% encoding/gob. (*Encoder) .EncodeValue
344 7.6% 41.7% 344 7.6% runtime.futex
1 0.0% 41.7% 340 7.5% paxos.func-001

(pprof) top50

Total: 6.5 MB
3.0 46.2% 46.2% 3.0 46.2% paxos. (*Paxos) .GetInstance
1.5 23.1% 69.2% 1.5 23.1% reflect.unsafe New
1.0 15.4 84.6% 1.0 15.4% newdefer
0.5 7.7% 92.3% 0.5 7.7% runtime.allocm
0.5 7.7% 100.0% 0.5 7.7% runtime.convT2E
0.0 0.0% 100.0% 1.0 15.4% encoding/gob. (*Decoder) .Decode
0.0 0.0% 100.0% 1.0 15.4% encoding/gob. (*Decoder) .DecodeValue
0.0 0.0% 100.0% 1.0 15.4% encoding/gob. (*Decoder) .decodeInterface
0.0 0.0% 100.0% 1.0 15.4% encoding/gob. (*Decoder) .decodeStruct
0.0 0.0% 100.0% 1.0 15.4% encoding/gob. (*Decoder) .decodeValue



