6.824 Final Project Design Document

Sumit Gogia, Kevin Y. Chen, Michael Xu, Tommy Zhang
May 2014

1 Introduction

The problem addressed in this project was that of building a persistent, fault-tolerant, per-
formant key-value store. Serving as a foundational storage mechanism for many different
large-scale applications, as evidenced by the vast number of applications dependent on ser-
vices providing key-value storage such as MongoDB and Redis, it is essential that a key-value
storage system satisfy the properties listed above.

Link to code: simple.mit.edu/6.824/

2 Design

Our system employs established techniques in distributed systems to provide the properties
desired. Persistence is accomplished with a logging system that allows machines that have
failed to reestablish their state by examining the log; large data management is provided
both through sharding the store across many machines in memory and on disk; performance
and fault-tolerance obtained through a memory-handling system similar to caching which
helps serve common requests very quickly, along with an optimized version of the Paxos
protocol, Multi-Paxos, to improve the communication bottleneck present when using Paxos
for replication. The design and implementation details of each of these systems follows.

2.1 Fault-Tolerance and Persistence

The system provides persistence by maintaining, for each server, logs on disk recording infor-
mation for each operation the server performs. On recovery, so long as its disk is maintained,
a server then only needs to roll back state to the last operation which was fully executed.
The system strives to provide strong persistence, at some cost of throughput and recovery
time. Much of the persistence comes from logs on disk, which utilize Google Go’s gob library
for performance and efficient memory usage.

Paxos is made persistent with two standard Write-Ahead-Logging systems. A logging
directory is made for each Paxos peer. In this directory, a separate file is created for each
Paxos instance, to store necessary variables. The largest proposal number, accept number
and accept value are written to this log befo re responses are given to RPC’s. This ensures



that all relevant Paxos state is persistent before other peers are notified; preserving correct-
ness. A single file is used to log all Paxos decisions. Each time a decision is made, the result
and sequence number are appended to the decision log file. Upon restart, all Paxos instance
variables and all decisions on disk are loaded back into memory. In handling incomplete
writes to log, the server catches an error thrown by the log decoder and tags the operation
as partially committed. Invalid decisions and instance logs are not loaded into memory.

The ShardKV server persists several items to disk: 1) A write-ahead log of applied op-
erations 2) The key-value store 3) Snapshots of the store’s state upon reconfiguration. Any
operation that the ShardKV server performs is fully logged. Operations are both logged and
applied to a persistent database in a single thread. This thread ensures that the operation
log and persistent data store state differ by at most one operation. This property allows
the server to recover from main memory loss in a relatively simple manner. The key-value
store exists in persistent storage, along with snapshots of the server state at different con-
figuration versions. A dangerous fault only occurs if main memory is lost in the middle
of a write to disk. In this case, an operation must be invalidated. Before an operation is
committed to persistent memory, any state required to undo the operation is logged in an
Undo Entry. The entry indicates that an operation is about to be committed to memory.
After write-through, an Operation Entry is written to the log. An Operation Entry com-
prises a complete description of the operation (Type, Key, Value, etc.). An operation is fully
committed when both Undo Entry and Operation Entry are present in the log. A missing
or invalid Operation Entry indicates an incomplete operation, and results in a rollback.
For Put and Get operations, rollback involves resetting the affected values in the key-value
store and deduplication map; the data is available in the logged Undo Entry. A reconfigure
operation, which requires the movement of entire shards, is surprisingly simpler to invalidate.

Incomplete reconfigurations are dealt with by resetting server state to the previous snap-
shot. A snapshot stores all shards and deduplication state up to any reconfiguration. Since a
snapshot is stored before any shard movement begins, this strategy is correct, if not terribly
performant.

The Shardmaster does not keep a local log. Since the Shardmaster simply creates new
configurations for each operation, rather than allowing modifications as ShardKV does, per-
sistent storage of the configurations is not required. To recover from main memory loss, the
Shardmaster reconstructs the list of configurations using the Paxos log. All logged operations
are executed sequentially, resulting in a duplicate of the pre-crash state. Paxos’s persistence
is enough to ensure Shardmaster persistence and fault-tolerance.

Along with main memory loss, all systems can tolerate the loss of a single servers disk
contents, given that there are at least three Paxos peers. Since each entry in the Paxos log
is guaranteed to be in the persistent storage of at least two of the three peers, the union of
any two machines is guaranteed to contain the entire operation history.



2.2 Large Data Management

Applications often require very large storage space, so that each server providing the storage
needs to be able to serve hundreds of gigabytes of data. Sharding can help to provide fast
access to large amounts of data, but as each server will only have a few gigabytes of memory,
it does not completely solve the issue of needing to serve hundreds of gigabytes per server.
The method by which the system solves this issue is by allowing the disk for each server to
be used as storage space alongside memory, with a caching mechanism determining which
key-value pairs to serve quickly from memory, and which key-value pairs are less important
and can be stored on disk.

This portion of the system was implemented as an LRU cache holding the portion of the
key-value store in memory, which communicates with a local instance of MongoDB that holds
our on-disk storage. Each time get or put operations are serviced, the results are brought
into the cache; in the case of puts, results are also placed into a write buffer which is written
to disk by a background thread. It is assumed that the time required for any writes in the
write buffer to be applied is less than the time it takes for the results of that operation to
move out of the cache, since the cache is assumed to span a memory size on the order of
gigabytes, and most accesses to the storage are on a relatively-small set of keys.

There were also several changes that had to be made to the initial strategies developed in
lab 4b for handling the necessary RPC calls. While get and put requests could be handled by
just replacing the memory accesses with corresponding requests to the data structure handling
disk and memory accesses, the reconfiguration operations required significant changes, since
sending an entire shard, consisting of both memory and on-disk contents, would require
reading the entire shard into memory before sending. To surmount this, the system has the
receiver ask for fixed-size pieces of a shard until the server it is receiving from indicate that
the shard has finished sending. A server can ask for different pieces of a shard from different
servers; since we keep an ordering on the key-value pairs, the receiver can request according
to the amount of key-value pairs it has received, and any sender will know which portion of
the shard needs to be sent next.

2.3 Performance Optimizations
2.3.1 Paxos

The system makes heavy use of the Paxos protocol for decision making and consensus within
the shardmaster and replica groups. In the basic Paxos protocol, each Paxos agreement
round requires at least 2 round trip messages between the proposer and acceptors. In order
to decide on a value, the proposer must first send out a round of prepare requests before
sending out the accept requests (and wait for acknowledgements in both cases). The prepare
requests are necessary in order to maintain correctness of the protocol; if proposers skip the
prepare phase, then the value decided on may not be unique.

However, the Paxos protocol retains correctness as long as at most one proposer skips
the prepare phase. This means that in the case that values are only proposed by a single



proposer, the Paxos protocol can be optimized by requiring only 2 round trip messages for
each consensus round. We implemented a version of multi paxos which makes use of this
observation by allowing elected leaders to propose values by skipping the prepare phase.

Leaders are elected every LeaderLifetime rounds (the default lifetime is 20 rounds).
Every round r with » = 0 mod LeaderLifetime is designated as an election round. The
Paxos peer which wins an election round r is then designated as the leader for the next
LeaderLifetime rounds. During the rounds in which a Paxos peer is the designated leader,
it is allowed to propose values by skipping the prepare phase, whereas all other Paxos peers
must propose values using the normal Paxos protocol.

To implement this, we augment the consensus protocol to decide on a tuple of the form
(value , id) containing both a decision value and the id of the Paxos peer who proposed
it originally. The Paxos peer is considered the winner of a round if its id was decided upon.

Note that Paxos agreement rounds are not guaranteed to proceed in sequential order
(i.e. the Paxos decision for some sequence number i + 1 is allowed to start before round i is
complete). In order for a Paxos peer to determine whether it is the leader in some round i,
it checks to see if round r was completed and it was the winner of round r, where r is the
latest election round.

In order to make use of the multi paxos protocol, clients try to contact the leader of the
Paxos family in order to propose a value, and try other Paxos peers only if the leader is
unreachable. For example, in order to perform a read/write operation on a shard, clients
will first attempt to contact the leader of the replica group responsible for the shard before
contacting the other servers in the group. The key value servers include the leader of the
replica group in their response to the client so that the client learn the leader of each replica

group.

With this implementation, Paxos agreement rounds generally require only 2 round trips
of messages since clients will all attempt to contact the leader of a replica group. In the
event of failed links or network partitions, the Paxos agreement will revert back to the basic
protocol, but this optimization means that the steady state in a stable network configuration
is much faster.

3 Results and Discussion

3.1 Fault-Tolerance and Persistence

The system was shown to be very capable of handling many different types of failure, with
the only exception being the case when there multiple disk failures within the same replica
group. Tests were made to determine the effectiveness of the system in the cases of network
partitions, network failure and unreliability, as well as crash and memory losses. These
tests were created by using the tests for lab4b, as well as adding hard resets throughout



these tests which would also reset the memory of the working server. The logging protocol,
coupled with Paxos, allowed the system to handle all the scenarios well; however, this was at
the price of performance, since logging requires many disk accesses. Without any other of the
improvements on lab 4b in place, the system slowed to nearly 10% of the speed it previously
had, those these tests were run all on a local machine. It is expected that the relative
performance to the case where persistence was not implemented would actually improve in
the case that the system was tested on multiple machines, as the overhead of communication
between the servers would also be heavy.

3.2 Large Data Management

Our system was also shown to handle large amounts of data well through our tests. Tests
were developed to measure the correctness of the system under the case of all operations
that were present in lab 4b, applied in heavy amounts; the system passed these without
suffering significant performance drops due to the fact that it writes to disk via a background
process. Performance of course suffered when the requested keys were not in memory, since
the disk accesses required far more time than the memory access - however, we do expect
this scenario to be infrequent, indicating that the overall performance of the system should
be good. In conjunction with the fault-tolerance and persistence system, this system did not
slow performance significantly.



