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Abstract

We present Diego, a simple but flexible and expressive conflict-resolution framework. Diego
allows developers to easily build multi-user applications that operate on the same data in a
consistent fashion. Diego resolves conflicts via developer-provided and domain-specific conflict
resolution methods. Diego also provides all-or-nothing atomicity, at-most-once execution and
durability. We demonstrate the framework on three different applications: a simple key-value
store, a collaborative text editor and a distributed lego design editor.

1. Introduction

With the rise of increasingly complex mobile and web applications, users have come to expect

that their applications run across multiple platforms, allow multiple users to manipulate the same

data concurrently and consistently and remain responsive even in the presence of network
issues such as dropped or delayed data. These applications often have relatively little data --
usually a few megabytes, almost certainly no more than a few hundred megabytes; however, the
operations executed on this data tend to be unusual and highly domain-specific, and sometimes
very complex. Designing a system that can satisfy these requirements while also scaling to

thousands or millions of users is a challenge that only a handful of companies have tackled.

In this paper we present Diego, a flexible framework that we developed to solve exactly the
problem described above. Diego is designed to allow rapid development of collaborative
applications by supporting the execution of arbitrary, developer-specified transactions on
in-memory state in an unconstrained developer-specified format. Since clients may attempt
concurrent transactions, these transactions may be conflicting; Diego allows the developer to
easily specify powerful conflict resolution policies that can modify conflicting transactions to
avoid the conflict, overwrite the conflicting data or reject transactions altogether. Assuming
correct use of the framework, Diego’s transactions also offer all-or-nothing atomicity,
at-most-once execution, strict serializability, as well as optional durability at some performance
cost.

2. Related Work

Many modern mobile and web-based services implement a form of conflict-resolution in the
presence of multiple users collaborating with the same data. High-profile services include
Apple’s iCloud (formerly, MobileMe) that provides transaction-based synchronization of user
contact and calendar information. This transaction-based approach was first described in
Bayou, a weakly-connected replicated storage system [Terry 1995]. More recently, Google
developed a collaborative document preparation and editing platform (Google Docs) and the



short-lived, but high-profile collaboration platform called Google Wave (now Apache Wave). Both
of these services represent examples of applications implemented using operational
transformations, first described in the work by Ellis [Ellis 1989]. Operational transformations are
a form of consistency control and conflict resolution by transforming each operation into one that
takes into account any operations that may have occurred concurrently. An alternative approach
is using differential synchronization which attempts to describe each operation as a sequence of
difference and patch operations [Fraser 2009]. Diego has a more general conflict resolution
model than either of these approaches, as it allows both operational transforms and differential
synchronization to be expressed in terms of Diego operations.

3. Design Principles and Goals

Diego is inspired by ideas employed in functional programming and it relies heavily on the
deterministic execution of abstract transactions on abstract in-memory state. Since transactions

are deterministic and contain no side effects, an application server that uses Diego (from now on
called the Diego server) and all of its clients can agree on a common state if they agree on what
the nil (empty) state is, and on the ordered set of non-conflicting transactions that have
executed. The role of the Diego server is to maintain this ordered set of transactions and resolve
any transaction conflicts.

We will discuss conflict resolution by first observing that a client that has observed the entire
ordered set of transactions cannot generate a conflicting transaction -- the client and server
agree on the same state, so any newly generated transaction by the client are valid by definition.
Assuming that the server informs clients of transactions in their execution order (see Section 4),
we then only consider a transaction T to be in conflict if the client C that generated it was
oblivious of transactions T,, T,, ..., T, which the server S had already executed. We call the set
of such transactions T, through T, the conflict window. It is possible that the transactions in the
conflict window are independent of T, and T should proceed unchanged; this is a false confilict --
an example is two independent writes to different keys in a key-value store. It is also possible
that C should never have attempted transaction T, and it should not be executed by the server;
this is a true conflict -- an example of such a situation is modification of a data item, when that
data item has been deleted in the conflict window. It is also possible to have a true conflict where
had C been aware of T,, ..., T,, it would have constructed a different transaction T’ to achieve its
desired effect. If S knows the conflict window and the state as observed by the client, S may
then use that knowledge to transform T into T’ and execute the transaction; in this case, the
conflict is resolvable, and this is the idea of operational transforms. Diego allows the developer
to easily and succinctly express the logic to determine which of these scenarios is occurring,
and how to resolve the conflict.

Diego does not have a data model of its own, and does not constrain transactions in any way.
Instead, it requires the developer to implement the data structures that represent the application
state and the functions through which Diego will apply transactions to the state and resolve
conflicts.
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Figure 1. Trailing state, transaction log and current state
4. Framework Details

Diego achieves the goals outlined in Section 3 by maintaining two copies of the in-memory state:
the current state copy reflecting all transactions executed up to the present moment, and the
trailing state copy, which reflects all but the t most recent transactions (see Figure 1). The
variable t is set by the developer; we will refer to it as the trailing distance. A large trailing
distance allows for the resolution of transactions with longer conflict windows. However, it also
linearly increases Diego’s memory footprint, so the developer can tune this parameter for
optimal performance in their application. Trailing distances of up to a few thousand transactions
still give reasonable performance, as discussed in Section 6.

All transactions that have been applied on the current state but have not been applied on the
trailing state are entered into a transaction log (Figure 1), implemented as a doubly-linked list. In
the steady state, the log contains t transactions; Diego then executes non-conflicting

transactions by applying them on the current state, appending the transaction to the head of the
log, removing the transaction at the tail of the log and applying it to the trailing state. In case of a
conflicting transaction, Diego first attempts to resolve the conflict (Section 4.1), and if

successful, runs the above procedure on the transaction produced by the resolution process.

In Diego, transactions and states are assigned numerical IDs starting from 0. A transaction ID i
implies that this transaction executes after the transaction with ID / - 7, while a state ID of j
implies that the last transaction that was applied to this state had an ID of j - 1. Therefore, when
a client is generating a transaction, that transaction bears the same ID as the state ID on that
client.

We will discuss three scenarios regarding incoming transactions that need processing by the
Diego framework:

(i) Incoming transaction ID = current state ID.

In this case, the client who sent the transaction is up-to-date, and the transaction cannot be
in conflict. Diego will simply execute the transaction as described above. This is the case
with transaction T, in Figure 2.

(ii) Incoming transaction ID < trailing state ID.



The client that sent the transaction is too far behind, and Diego cannot apply this transaction
because it may violate at-most-once execution as described in Section 4.5. This is the case
with transaction T, on Figure 2. The client is then advised to fully synchronize its state with
the server.

(iii) Trailing state ID < incoming transaction ID < current state ID

In this case, the incoming transaction’s conflict window is a subset of the transaction log.
Diego uses the conflict resolution process described in the following section to determine the
correct way to proceed. In Figure 2, transaction T; was sent by a client who last observed
transaction T,,, and T, was sent by a client who last observed transaction T, ,.

—
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Figure 2. T,is an example transaction that was generated with the client aware of the current state.

Thus, T, can be directly applied. In contrast, Tz and T, were made against an older state and need
to be resolved via the conflict resolution API. T, is a transaction based on a state older than the
trailing state and as such cannot be resolved automatically. In this case, the client is advised to

fully synchronize its state.

4.1 Conflict Resolution API

Diego requires the developer to implement three functions, in addition to functions that check
and set transaction and state IDs:

MakeState() — state
Apply(state, transaction) — outcome, transaction
Resolve(state, transaction_log, transaction) — outcome, transaction

Diego will call MakeState when initializing in order to create the nil (empty) state object that the
current and trailing state are initially set to.



Apply attempts to modify the state by applying the specified transaction and returns a boolean
result indicating success or failure and the transaction that was applied, if any. The returned
transaction may be different than the one passed in, as we will discuss in a moment. Apply must

always succeed if the transaction and the state have the same ID. Note that by definition, any
calls to Apply with the trailing state will satisfy this condition. If the IDs are not the same, Apply
must have been called with the current state, and should decide the type of conflict:

(i) False conflict: Apply returns success, and applies and returns the transaction unchanged.

(ii) True conflict: a conflict that is resolvable knowing only the current state. Apply uses the
state to resolve the conflict by constructing a new transaction, and applying and returning itin a
successful outcome. An example of this would be a transaction that appends a value to a string.
Even though other append transactions may have existed in the conflict window, the append is
fully defined in terms of the current state and the value to be appended.

(iii) True conflict: a conflict which is not resolvable knowing only the current state. Apply cannot
resolve this conflict and returns a failure outcome. In this case, Apply must not have modified the
state it was called with.

Resolve is called when Apply returns a failure outcome. The trailing state, full transaction log
and the conflicting transaction are provided as arguments to Resolve. It then attempts to use its
knowledge of the trailing state and all transactions since then (a subset of which is the conflict
window) to transform the conflicting transaction into a non-conflicting one. If it succeeds, it
returns a success outcome and the non-conflicting version of the conflicting transaction; the
non-conflicting version of the transaction is then passed to Apply for application onto the current
state. If Resolve returns a failure outcome, conflict resolution has failed and the client’s
transaction is permanently rejected. Resolve never modifies the trailing state or transaction log.

The implementations of these three functions do not need to be thread-safe, as Diego
guarantees that they will not be called concurrently.



4.2 Helper API

While implementing showcase applications that use the Diego framework, we have discovered a
common pattern that is repeatedly used across each application. As a result, the Helper APl was
born. The Helper API allows developers to implement all but the most demanding applications.
Unless the application needs a highly sophisticated conflict resolution strategy, most of them can
be easily implemented using the higher-level helper API. This API is composed of six main
functions:

Execute(state, transaction) — transaction

CheckedApply(state, transaction) — outcome, transaction

MakeContext(state) — context

UpdateContext(transaction, context) — outcome

CommutesWith(incoming_transaction, committed_transaction, context) — bool
ResolvesWith(incoming_transaction, committed_transaction, context) — bool, transaction

CheckedApply and Execute operate similarly to Apply in the conflict resolution API:
CheckedApply checks whether a transaction is in conflict with the state (calling Execute if not),
while Execute applies the transaction onto the state, returning the resulting transaction as in

Apply.

The other four functions are used in the Resolve step of the conflict resolution API. MakeContext
allows the developer to extract any data from the trailing state that may be useful when resolving
conflicts. Since the trailing state ID may be smaller than the incoming transaction ID, the client
sending the transaction has already accounted for some of the transactions in the transaction
log; UpdateContext is used to update the extracted context with the transactions the client had
already received based on the ID of the incoming transaction. UpdateContext is allowed to return
a failure outcome in case updating the context for some particular transaction is deemed too
expensive, too difficult to implement, or for any other reason the developer may decide to not
attempt to resolve the incoming transaction; the transaction will then be permanently rejected.

CommutesWith is called for every transaction T, that the client had not received, with the
intention of determining if the incoming transaction commutes with T,. If the transactions
commute in the extracted context, their order of execution is unimportant, and no further
resolution is necessary. If the transactions do not commute, then ResolvesWith is called on the
same transactions and context, and it attempts to transform the incoming transaction into an
equivalent one, taking account the context and the non-commutative transaction T,. This
process is repeated for every transaction the client had not received, modifying the incoming
transaction as ResolvesWith indicates, until the end of the transaction log is reached. If all



conflicts up to that point were resolved successfully, the transaction is accepted and executed
as usual.

All arguments to these functions, except the state argument to Execute, must not be modified
inside the functions.

4.3 Example Usage of the Helper API

A simple key-value store implementation using the Helper API is shown in Listing 1. It
demonstrates that a minimal Diego server can be built in less than 100 lines of code. The
key-value store treats all operations as commutative as long as they operate on different keys.
The developer simply implements the basic data structures for the key-value store and the API
callbacks; all other details of state maintenance and thread-safe transaction processing are
handled by Diego.

4.4 All-Or-Nothing Atomicity

Assuming correct implementation of the required callbacks for either API, Diego provides
all-or-nothing atomicity for transactions. Namely, in the conflict resolution API, Resolve must
never modify any state, while Apply only modifies the state if the transaction is accepted, and is
prohibited from modifying it otherwise. In the Helper API, only Execute is allowed to modify state,
and it is only called if the transaction is going to succeed as determined by CheckedApply.

4.5 At-Most-Once Semantics

All transactions in Diego carry a unique token that helps Diego identify if a transaction has
already been executed. The token is composed of two parts: a 64-bit client identifier which
should be randomly generated by each client, and a sequentially-increasing request counter, to
distinguish between different requests by the same client. Diego keeps track of all tokens for all
transactions currently stored in the transaction log, which helps ensure that any transaction
executed at most trailing distance transactions ago is not executed again. Any transactions that
may have been executed more than frailing distance transactions ago have IDs that are smaller
than the trailing state’s ID, and Diego will always reject them to ensure at-most-once execution.



// Key value store, set key/value op and transaction (list of ops)
type KeyValueStore struct {
data map[string]string
id inté64
resolveFn func(ancestorState *types.State, log *list.List,
current types.Transaction) (bool, types.Transaction)

// Set-value-for-key transaction
type KeyValueXa struct ({

Xid inté64

Key string

Value string

func (xa *KeyValueXa) Id() int64 ({
return xa.Xid

func (xa *KeyValueXa) SetId(id int64) {
xa.Xid = id

// Implement basic interface:

// 1. Execute, i.e., apply transaction
// 2. RApply transaction as long as it is made against current state
// 3. No context necessary for conflict resolution, so, trivial context callbacks
// 4. Transactions commute as long as they don’t modify the same key
// 5. If there is a conflict, it cannot be resolved.
func (xa *KeyValueXa) Execute(s types.State) types.Transaction ({
s. (*KeyValueStore) .data[xa.Key] = xa.Value

return xa

func (xa *KeyValueXa) CheckedApply (s types.State) (bool, types.Transaction) {
success, newXa := helpers.ApplyIfUpToDate (s, xa, helpers.applierForExecutable)
return success, newXa

func (xa *SetValueXa) MakeContext (ancestor types.State) interface{} {
return nil

func (xa *SetValueXa) UpdateContext (existing types.Transaction, context interface{}) bool {
return true

func (xa *SetValueXa) CommutesWith (other types.Transaction, context interface{}) bool ({
otherXa := other. (*KeyValueXa)
return xa.Key != otherXa.Key

func (op *KeyValueXa) ResolvesWith(t types.Transaction, context interface{})
(bool, types.Transaction) {
// never resolves non-commutative operations
return false, nil

// Create key value store with helpers
func makeState() types.State {
result := new(KeyValueStore)
result.id = 0
result.data = make (map[string]string)
result.resolveFn = helpers.CreateManagedResolver (helpers.makeContextForExecutable,
helpers.updateContextForExecutable,
helpers.commutesWithForExecutable,
helpers.resolvesWithForExecutable)
return result

Listing 1. A simple implementation of a key-value store using the Diego framework.



4.6 Durability

As an optional feature, Diego can durably log all executed transactions to aid fault recovery.
Since Diego’s current and trailing state, and the transaction log are kept in memory, it is
sufficient for Diego to durably write a transaction to disk after adding it to the transaction log, but
before notifying any client that the transaction committed. Diego implements this functionality by
automatically serializing transactions in Go’s gob format, writing them to disk and then using the
fsync system call to flush the system’s buffers.

4.7 Namespaces

All functionality described previously represents a single Diego namespace. The Diego
framework supports the concurrent use of multiple dynamically generated Diego namespaces,
and automatically handles the necessary synchronization to ensure thread safety.
Cross-namespace transactions are not supported, and as a result, transactions that target
different namespaces will likely be executed in parallel for maximum performance.

5. Applications

We used the Diego framework to implement several applications: a key-value store (with
substantially more involved semantics than the one shown in Listing 1), a collaborative text editor
and a distributed lego design tool. All of them achieve conflict-resolution by using the Diego
conflict-resolution framework. They also exhibit all-or-nothing atomicity, at-most-once semantics,
and can be durably logged. The applications demonstrate three levels of complexities regarding
conflict resolution: 1) the key-value store operates entirely using the Diego-provided Helper API;
2) the collaborative text editor implements operational transformations to resolve conflicts within
the Diego Conflict Resolution API and 3) the lego design editor takes advantage of the generality
of the framework to implement entirely domain-specific conflict resolution.

We describe each application and its usage of Diego in the following subsections.
5.1 Key-Value Store

We implemented several different operations in the key value store to help test and benchmark
Diego. One of its operations is a last-write-wins set operation that always executes against the
current state regardless of conflicts -- this is useful to simulate clients that are always

up-to-date. Another operation is an test-and-set operation which scans the transaction log if it
does not have the ID of the current state -- a long series of such operations is the worst possible
case Diego can face, and is useful for benchmarking. We also implemented several other
operations to stress different parts of the Diego system and wrote deterministic and randomized

tests to eliminate any bugs in our implementation.



5.2 Collaborative Text Editing

We implemented the back-end for a simple collaborative text editor by building text operational
transformations in Diego. We ported a well-known open-source implementation of composable,
non-invertible text operation transformations [Gentle 2014] to Go and our framework. We then
verified that our implementation is functionally identical to the reference code by writing tests.
Our implementation of operational transformations is only 253 lines of Go, compared to the
reference implementation’s 420 lines of Javascript; we believe that this difference is
predominantly due to the fact that we were able to leverage the Diego framework in our
implementation.

5.3 Distributed Lego Design

We developed a basic, collaborative lego design editor using a client/server architecture and the
Diego framework. The server is implemented in Go and consists of data structures that describe

an individual brick, a universe in which bricks are placed, a set of operations that can be
performed (create brick, move brick, change brick size, change brick color and remove brick),

and transactions that can group one or more operations. The server is an http daemon and
listens to post queries from the client, interprets those commands and formulates response

messages. A client’'s command can consist of a transaction for execution or a request for the

current state or transaction log that can be used for client synchronization.

The client is implemented using C++ and Qt and allows generating brick operations via a simple
scripting interface. The editor connects with the server on start-up and retrieves its initial state. It
continues to synchronize with the server via a simple polling mechanism. Whenever conflicting
operations are detected, the operation is rejected and the screen briefly flashes to inform the
user. A more sophisticated user-driven conflict resolution Ul remains future work. The client also
allows importing of STL files that are then voxelized (or brickified) and transformed into individual
create brick commands.

The lego design editor can encounter a number of different conflicts, each of which require
different strategies when detecting and resolving the conflict. Conflicting operations can either be
strictly rejected, can be accepted when operating on the same brick in a non-conflicting manner,
or can be transformed when chained operations make that possible. We describe example
scenarios below.

Two conflicting create operations: two operations may attempt to create bricks that
overlap in the lego universe. This conflict always results in rejection.

A move brick with a conflicting create brick (and vice versa): one client may move a
brick into a previously available space that is now occupied by a newly created brick. Similarly, a
brick may be created into a previously available space that is now occupied by a newly moved in
brick. These operations are rejected.



000 Foundry ]

Import Models | Tumble | Select

Log

CreateBrick -5 —
CreateBri

7
-752211001
-762211001

111
111
110
110
110
111
111
111

LhonooR M
orcormoo

CreateBrick 22 1002 2
CreateBrick 241002211001

ModifyBrickPosition 2515 26 10 0

Figure 3. Example client that lets users create bricks, modify their position, size and color.

Two bricks are moved or resized in conflicting manner: one client may move or resize a
brick into a space that was previously available but now occupied by another brick that was
moved or resized by another client. The conflicting operation is rejected.

A brick is simultaneously modified: if two clients attempt to simultaneously modify the
same aspect of the brick (position, size or color), the conflicting operation is rejected. However, if
they modify different aspects of the brick (one modifies the size and the other the color), the
conflicting operation is accepted.

Modifying a deleted brick: if a client attempts to modify a brick that was already deleted by
another client, the operation is rejected. However, if we detect another operation that recreates
an identically positioned and sized brick, we transfer the modification operation from the
previously deleted brick to the newly created one. This particular example demonstrates the
flexibility of our conflict resolution framework.



6. Performance

We used the key-value store implementation in Diego for our benchmarks as its transactions are
lightweight and reflect Diego’s efficiency more than the efficiency of the State data structures.
We ran the benchmarks on a recent 8-core Macbook Pro equipped with an SSD.

Diego with durability disabled is highly performant, achieving over 18.45 million operations per
second in the best case when all transactions are up-to-date with the state (Figure 4a). In the
worst case, when all transactions require a Resolve call that reads the entire transaction log,

performance is a function of the trailing distance (Figure 4b). Even though this case is highly
unlikely in practice, as Diego returns all operations that the client has not seen after every one of
their transactions, Diego still performs admirably with over 54800 transactions per second at a

trailing distance of 1000 operations.
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Figure 4a: Serial throughput when using the last-write-wins set operation without durability.
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Figure 4b: Serial throughput when using the test-and-set operation without durability.



When durability is enabled, Diego takes a significant performance hit, and is |0-bound due to the
fact that it has to flush the OS buffers after every transaction. As can be seen on Figure 5a,
Diego peaks at 7942 transactions per second in the best case; in the same unlikely worst case
as above, Diego manages 6105 transactions per second at a trailing distance of 1000
transactions.

Durable last-write-wins set, operations per second
10000

9000
8000

7000
6000
5000
4000
3000
2000
1000

0

Trailing distance = 50 Trailing distance = 250 Trailing distance = 1000
Figure 5a: Serial throughput when using the last-write-wins strategy for a key-value store with durability.
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Figure 5b: Serial throughput when using the test-and-set operation for a key-value store with durability.



Diego’s latency is highly sensitive to the frequency of concurrent operations and conflict
resolution. Figure 6 shows the average latency as seen by clients under different namespace
configurations and different numbers of concurrent clients. In three test runs, clients randomly
submitted to 1, 4, or 8 namespaces. In the fourth test run provided for reference, each client
submitted operations to a unique namespace independent of other clients. Results show that
latency increases slightly less than linearly as contention for the same namespace increases.
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Figure 6: Client latency as the number of concurrent clients and namespace configurations changes, using
a test-and-set operation against a key-value store. Durability was disabled for these tests.
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