
6.824 Final Project Report
Eric Lubin, Jared Wong, Kevin King

1

Performant Donut Final Report

Introduction
FileKV

Atomic File Renames
Memory Cache
Transactions

Paxos
Bulk Prepare
Biased Clients
Persistence Strategy

Donut
Traffic Reporting
Rebalance Strategy
Persistence Strategy

ShardKV
Incremental Shard Transfers
Persistence Strategy

Testing
Benchmarks

Benchmark Data
Bulk Prepare vs. Vanilla Paxos
FileKV MemCache
Paxos Biased Clients
Concurrent Throughput

Conclusion

Introduction
We were excited to take on the default project, as well as make our own additions to it. We
implemented a key-value store that functions in the presence of the following failures: dropped,
reordered, or duplicated network packets; crashing (hard booting) machines; and hard disk
failures. We make the guarantee that as long as a majority of the machines are reachable, the
key-value store will maintain liveness; and as long as a majority of the machines’ disks keep
their integrity, no operations will be lost and the store will be consistent. Our key-value store
also supports any key-value pair that fits in memory+swap, and has capacity equal to the
capacity of the disk.

FileKV
FileKV is our custom storage solution. Rather than using a third-party database or storage
system we decided to build our own all-or-nothing key-value database from scratch. At its heart
is the simple idea of storing each key-value pair as a new file. Each database consists of a
single directory and a file for each one of the key value pairs.

6.824 Final Project Report
Eric Lubin, Jared Wong, Kevin King

2

Atomic File Renames
To provide all-or-nothing semantics for our storage solution, we bootstrap atomicity using file
renames. Each key-value pair is stored as a file name-file contents pair on disk. In order to
provide all-or-nothing semantics, the key-value pair is initially written to a temporary file. The
commit point for storing a key-value pair is when we rename the temporary file to its final name.
Each file is named as the base64 encoding of its key, which allows both determinism for
encoding the key, if provided again, and reversibility if FileKV needs to list out all the keys at
once.

Memory Cache
Since FileKV must write all Puts to disk to achieve fault tolerance, we implement a Least-
Recently Used in-memory cache to speed up its performance. If a key and its value are Put, the
value is cached in memory, if it fits, after being written to disk. On Get, we first check whether a
value exists in the cache for that key. If it does, we can successfully return and if not we resort
to a disk lookup. The commit point of a Put remains the atomic rename of the file write. We limit
the size of the cache to a predetermined value, and flush values of old keys that no longer fit.

Transactions
Some of the operations in other components of our system require transactions with all-or-
nothing atomicity. To accomplish atomic transactions, we first log the entire series of puts to be
committed into a transaction log. We then execute each of these puts (on their individual files).
Finally, we delete the transaction log. The deletion of the transaction log is the commit point that
signifies that each of these puts were successfully completed.

Upon recovery, FileKV looks for a transaction log. A transaction log will only be present if FileKV
died before committing a transaction. If one is found, FileKV executes each of the logged puts it
contains and then deletes the transaction log, finally resuming normal function.

Snapshots
We provide an efficient and lightweight snapshotting function that allows for near constant time
“versions” of each FileKV database to created on the fly. We use this snapshotting tool in our
ShardKV implementation to make a copy of the current set of shards that needs to be
transferred to another paxos group.

The snapshotting process is as follows:

1. Create a new directory with a temporary name
2. Iterate through all the keys and make hard links for every key, value pair in the new

database
3. Rename the database directory to its desired name

In this manner, snapshots take time in proportion to the number of key-value pairs in the
database and are independent of the size of these values. If the old database goes to overwrite
the value of a given key with a subsequent Put, our use of atomic rename means that the new
file is written to a new empty inode before the inode pointer is changed. Thus the read-only

6.824 Final Project Report
Eric Lubin, Jared Wong, Kevin King

3

snapshot remains unmodified as the reference count to the value is decremented.

Paxos

Bulk Prepare
Vanilla paxos requires both a prepare and accept phase for every paxos instance. When
sending its first prepare, a paxos peer attempts a “bulk prepare” of a constant size (currently set
to 25). When an acceptor receives a bulk prepare and has not had any prepares for the next 25
slots, the acceptor records the prepare for the current slot in the next 25 slots as well. If a peer’s
bulk prepare is promised to by a majority, this peer will skip the prepare phase for these slots.

Biased Clients
To solve the dueling leaders problem, we bias our clients towards sending requests to the
earliest servers in the socket list. This behaviour follows naturally from the way clients retry in
the face of errors. Clients first try server zero, then on error proceed to the next server in the list.
As a result, in relatively normal and reliable network connections, clients will generally be
contacting the first paxos peer. In this way, the first paxos peer will in general successfully bulk
prepare and not be competing against other peers. We see this as a pleasantly simple way to
avoid dueling leaders since our paxos “clients” are also servers that are under our control.

Persistence Strategy
We extensively make use of FileKV for all operations that modify state to ensure that all state
changes are persisted to disk in case of failures. In addition, we add some further error-handling
in the case that a call to Start() is completed, and then the server crashes before the value has
been decided (because propose runs as a separate go routine). In Start(), we write the propose
value for the sequence number to disk using FileKV, and on recovery we check for any values
that were proposed but did not complete, in order to restart that go routine that was halted.

Donut
The Donut is our paxos-backed fault-tolerant load balancer that dynamically reassigns shards to
groups as a function of the current and historical traffic on the network. The load balancing is
sensitive to both a high number of requests to a given key, as well as the size of the value being
stored for the key.

Traffic Reporting
For ShardKV replicas, time is divided up into units of Epochs. Within each epoch, each paxos
group tracks the total amount of traffic to each shard. Traffic is considered a function of both the
number of requests to any keys within that shard as well as the size of the values stored for that
key. On every request sent to the group that owns that shard in which the key resides, we add a
constant REQUEST_COST, along with the size of the value, to a counter for the given shard. At
the end of every epoch, each paxos group sends their traffic information to one of the servers in
the Donut paxos group, then flushes the traffic array and begins again.

Rebalance Strategy

6.824 Final Project Report
Eric Lubin, Jared Wong, Kevin King

4

The Donut server is a paxos backed set of servers responsible for processing the traffic updates
from the shardkv servers and sending configuration updates to the shardmaster. Time is divided
up into Eons, every Eon is configured to consist of one or more Epochs, and a configuration
update is guaranteed to be sent to the shardmaster only once per Eon. In our current
implementation, Epochs last 3 seconds each and Eons last 15 seconds each.

Donut keeps track of an exponentially weighted moving average of the traffic to each shard,
which is updated every Epoch. We define α to be the weight of the most recent traffic
update in the moving average. At the end of every Eon, Donut attempts to rebalance shards in
order to best even out the average traffic to each group.

Our rebalancing algorithm is as follows:

1. For every group, sort its shards in increasing order by traffic
2. Sort every group by the sum of the traffic to all its shards
3. Consider moving shards to the group, x, with the smallest total, x.Total
4. For each group, y, starting with the one with the most traffic, move the shard with the

lowest average traffic, indicated by value v, to x if y.Total - x.Total > v
5. Every time a shard is moved, return to step 2 and repeat

During shard transfers, Eons are halted for a predetermined amount of time to give the server
enough time for the shard transfer to take place without having an abnormally low amount of
traffic for that period.

Persistence Strategy
We make use of FileKV to get and set the current Eon number, the exponentially weighted
moving average of each shard’s traffic, the highest epoch number reported for each group ID,
and the last committed paxos sequence number. These values, along with the persisted state of
Paxos, are enough to recover from a crash.

ShardKV

Incremental Shard Transfers
The biggest challenge in supporting more data than can fit into memory was making shard
transfers incremental. In the original implementation, all of the keys of a shard were serialized in
a single RPC, transferred over the wire all at once, and deserialized into memory in a single
function call. Since a shard can have many key-value pairs (and client request history records),
our design had to change if we were to support key-value pairs up to the full memory size.

Our new design sends either one key-value pair or one client request history record at a time,
and then sends a final “shard transfer completed” message to signify that the receiving replica
group now “owns” the respective shard. Extra care had to be taken to provide delivery
guarantees under crashing processes. A shardkv peer does not advance its commit point until it
has disowned the shard, snapshotted its current state, and queued the snapshot as a pending

6.824 Final Project Report
Eric Lubin, Jared Wong, Kevin King

5

shard transfer (all recorded to disk using FileKV).

A subtle detail is that since shard transfers happen across multiple RPCs, it is possible for a
peer to receive two shard merges for the same shard with differing versions before either has
completed (due to reordered and duplicated requests). We resolve this problem by recording
both the highest version of a shard currently being merged and the highest version of a shard
already merged. In this way, peers know whether a shard merge RPC is applicable to their
current state.

Persistence Strategy
At the core of ShardKV’s resilience to crashing is the persisted paxos log. If a hard disk fails, a
ShardKV peer will refill its entire paxos log on the first request and as a result completely rebuild
its state. This recovery would obviously take a long time, but is only for the worst case failure.
To facilitate recovery, we persist a paxos commit point for each ShardKV peer that is only
advanced upon the complete processing of an operation found in a paxos instance.

For some operations, it is not sufficient to process the operation and then bump the commit
point, since a crash could occur between these two operations. In this case, we use a FIleKV
transaction (with all-or-nothing atomicity) and couple the commit point increment with the other
persisted data structure modifications (the key-value pair data map and client request history
map).

Upon recovery, a ShardKV peer continues from the persisted paxos commit point. The peer
also checks if there are any pending shard transfers, and if so, processes these transfers using
the stored snapshots.

Testing
The hardest aspect of a server to test is what happens when a server is spontaneously killed at
any point in the flow of execution. Using methods of lab 3 and lab 4 are insufficient for testing
what happens when a server is spontaneously killed and later restarted. In order to test crashing
servers, it is only appropriate to create separate processes for each logical server and kill the
processes using SIGKILL. In order to accomplish this goals, we created a framework for testing
using separate processes.

Our framework is in the package `testutils`, and it provides code to setup and teardown the
necessary components of a server. In order to get a server up and running we usually need to
create 4 things:

● Server Binary - A binary that simply runs a new instance of the server. This is important
for starting the server in a separate process. Note that fork really isn’t an option in Go.

● Interprocess Communication Socket - To be able to communicate with our server from
our tests

● Server Port - To listen for incoming requests from peer server, for example in a paxos
group or shardkv replica group

● FileKV - Our storage solution backs every server we create so that we can handle killing

6.824 Final Project Report
Eric Lubin, Jared Wong, Kevin King

6

and restarting servers.

Coordinating the creation of these four things for each server can be quite complicated. Our
framework facilitated the creation of these parts of the server, starting servers, killing servers,
and cleaning up after servers.
In order to create proper binaries for each of our servers, we had to create separate RPC
systems just for the interprocess communication.

Testing our systems individually and together in order to test killing servers at arbitrary points in
time, and to test losing disk, was relatively straightforward given the primitives provided by our
testing framework.

Each of the packages that end with _test, have our persistence tests.

Benchmarks
Benchmarking a persistent distributed system with a minimum of 15 separate servers
(processes running separate servers) on a single computer is mostly futile. Each of the servers
is backed by persistent storage and requires writing to disk for nearly every state change. We
don’t have access to battery backed memory, so we require that we write to disk on every single
update. When 15 separate processes all try to write relatively small chunks of data to disk very
frequently, the single largest factor impeding performance will be disk writes.

In order to properly benchmark this system, we should have set up different computers for each
server.

Benchmark Data

Bulk Prepare vs. Vanilla Paxos
Test: Put 1000 10-KByte values

 Vanilla Paxos Bulk Prepare

Avg. Latency 112ms 61ms

Total Time 120.47s 65.12s

We saw positive results from our paxos bulk prepare protocol. Recall that Vanilla Paxos
executes both the prepare and accept phase for every paxos instance and Bulk Prepare avoids
the prepare phase on most paxos instances.

FileKV MemCache
Test: Put 100 10-KByte values and then execute 500 random Get requests

 Without Caching With 2GB Cache

6.824 Final Project Report
Eric Lubin, Jared Wong, Kevin King

7

Avg. Put Latency 37.69ms 60.21ms

Avg. Get Latency 31.13ms 37.38ms

Here we observe that our cache actually drastically reduces performance. We conjecture that
this is because every client operation requires a new paxos agreement and advancement of the
shardkv commit points. Since both of these events cannot be cached, we are probably better off
letting the operating system cache disk reads for us.

Paxos Biased Clients
Test: Agree on 1000 consecutive values.

 Biased Access Towards
peer[0]

Access peer[i] for Instance i

RPCs 8157 11360

Total Time 6.421s 11.647s

Our idea of biasing clients to the same peer proved to work well in avoiding dueling leaders,
drastically decreasing the number of RPCs and time required to agree on 1000 values.

6.824 Final Project Report
Eric Lubin, Jared Wong, Kevin King

8

Concurrent Throughput
Test: Put 100 values 1MiB in size, 3 shardmasters, 3 shardkv groups, 3 replicas per shardkv
group

Concurrent Requests Throughput (MiB/s)

1 3.163805

2 1.977247

3 1.420348

4 1.001179

The throughput decreases drastically as we increase the number of concurrent clients. This
effect is probably because all servers share the same disk. As the contention over the disk goes
up, the throughput will decrease.

Conclusion
Making our entire system persistent was indeed a challenge. Although our “abuse” of the UNIX
file system may be a questionable idea, we enjoyed rolling our own persistent store. Building
persistent primitives and then abstracting around them worked very well from a software
engineering point of view. Persisting the paxos log first provided us, for free, the recovery of
every state machine built on top of it. We definitely wish we had more time to deploy our system
into a production environment, especially to test the donut component. Since all shards are on
the same “machine” (the laptop we are using to test), moving shards between groups to load
balance only had a negative effect because of the shard transfers. Overall, this project was
interesting in both the software engineering and distributed systems manner. To say the least,
all three of us respect the UNIX file system much more after completing this project.

