6.824 Final Project Report

Geoffrey Lalonde (glalonde@mit.edu) Andrew Huang (kahuang@mit.edu)
Project Repository: https://github.com/jefesaurus/6824final

In our final design and implementation of a persistent, fault-tolerant,
high-performance key/value store we decided on several of the goals stated in the project
assignment. Namely, using multi-paxos with leader election to remove dueling leaders
under high load, removing the prepare phase of paxos when operating under a consistent
leader, better memory utilization for our shardkv service’s configuration snapshots,
persistence for our paxos library, and persistence for our shardmaster service.

The generic paxos library that we implemented in lab3a requires some
modifications and optimizations in order to streamline the consensus protocol for
highly-performant applications. We address two main issues: dueling leaders under high
client load and reducing the necessary round-trip delays by one by removing the paxos
prepare phase.

Multi-paxos is a variant of paxos where one paxos peer acts as the leader of the
replica group. The leader is the only peer who can push paxos instances to agreement,
and as a result all peers who are not the leader forward their requests to the peer that they
believe is the leader. The leader is elected with the following protocol:

1. All peers ping each other every PING_INTERVAL seconds

2. Every PING_INTERVAL seconds, each peer determines who the leader is: the highest index
peer whom they have received a ping from in the last PING_INTERVAL * 5 seconds (which may
be themselves).

3. A peer can determine that it’s the leader iff it has contacted a quorum of peers in the last
PING _INTERVAL * 5 seconds.

Assuming that peers’ clocks are reasonably synced, this protocol ensures at most a single
leader at any given time. As an optimization, if an instance is already decided and a client
starts a proposal, the leader ignores the client and returns. Because of this optimization
and the fact that only the leader can push an instance to agreement, some peers may not
hear of decided values if the network is unreliable. Therefore, when a non-leader peer is


mailto:glalonde@mit.edu
mailto:kahuang@mit.edu

contacted by a client to start an instance, it spawns a goroutine that tries to determine the
decided value once the instance has been agreed on.

The prepare phase of paxos provides consistency guarantees that are trivial for
multi paxos when there is a consistent leader. However, when the leader dies and a new
leader is elected, these consistency issues become problematic without a prepare phase.
In order to maintain correctness and consistency of our paxos library, we revert back to our
original paxos implementation for the set of instances that the previous leaders had
controlled. We determine the maximum paxos instance by contacting a majority of peers
and taking the maximum of their highest known instances. For any instances above this
maximum, we are able to skip the prepare phase again.

With the addition of these two modifications, we were able to approximately double
the throughput of our paxos library. Our three throughput tests consisted of the following: 50
concurrent operations, 10,000 operations done in 200 batches of 50 operations, and again
10,000 operations done in 200 batches of 50 operations but with simulated network
propagation delays for rpcs. The results are shown in Figure 1.

50 Ops 10,000 Ops 10,000 Ops w/ Delay
Paxos 165.121886ms 25.700564218s 1m3.028979029s
Multi-Paxos 76.615355ms 14.715619431s 46.097839948s
Figure 1

In order to handle hundreds of gigabytes of data, it was necessary to reduce the
memory overhead of our shardkv implementation. To handle the movement of shards
across replica groups, our implementation stored snapshots of shards per configuration
number. This scales very poorly with both configuration number and shard size, so we
implemented a forgetting scheme. Each shardkv replica group determines the minimum
configuration number of the replica group by using the min function of its paxos peer.. Each
shardkv server then contacts at least one server in each of the other shardmaster groups
and exchanges minimum configuration numbers. When this minimum is advanced, a
replica group can delete the snapshot of shards for that configuration number. If all replica
groups are up to date with the latest configuration, we incur no extra memory overhead.

Our final addition to this project was to make our paxos library and shardmaster
service persistent under two cases: having a minority of peers crash but maintain disk and
all peers dying and the service coming up again. It was important to us to make these



persistent as our paxos library can be used for a variety of applications and the
shardmaster service is a single critical point in the design of our system. We implemented
persistence with the external library LevelDB (https://code.google.com/p/leveldb-go/) which
is a performant database key value store. We initially chose it because it is actually written
in Go, as opposed to most others, which we hoped would make the interface more natural
and easy to use. For the most part this turned out to be correct, but in retrospect, we regret
choosing this particular implementation because it is quite young, has almost no
documentation, and is missing some major features. One example is that it isn’t possible
to iterate over all of the entries in the database. The result was that in several cases we had
to serialize a golang map as a keyset in one of the actual keys, and then manually keep it
fresh with batch write and deletes.

Our persistence strategy was to identify the critical state and then replace all of the
in-memory data structures with calls to a database on disk. The idea was that the database
would be able to maintain its own read/write logs and rollback procedures to deal with
atomicity for writes to multiple rows or for large values. It sounded simple enough at the
start but ended up causing a fair amount of trouble because neither of us have any practical
experience with databases. For paxos we persisted to disk only the bare minimum of data
required to start up the process from the database. This mostly consisted of a few pieces
of static data about the overall state of that paxos replica and instance data. In order to be
able to rejoin a paxos consensus group we stored the addresses of the peers and the
name of the actual paxos member. For each peer, we persisted the minimum instance
number, maximum instance number. Most importantly we also store all of the paxos
instance data known after min. Upon crashing and restarting, we check our database for
the metadata to provide our peer with context in order to communicate with our peers.
Upon starting up, the peer looks for a database, and does some consistency checks to
make sure the required data actually exists. After that it reenters the main startup
sequence.

The shardmaster persistence was predicated on our paxos persistence. That is, we
stored some static metadata for context, but most of that values were in a few key/value
name spaces for configurations, and query replies.

Through implementing multi-paxos, removing the prepare phase of our paxos,
forgetting old snapshots of shardkv shards, and persisting our paxos peers and
shardmaster service we were able to achieve a high-performance, fault-tolerant, and
persistent distributed key/value store system.



https://code.google.com/p/leveldb-go/

