PushyDB

Jeff Chan, Kenny Lam, Nils Molina, Oliver Song
{ieffchan, kennylam, molina, osong}@mit.edu
https://github.com/jeffchan/6.824

1. Abstract

PushyDB provides a more fully-featured database that exposes RPC calls through a single client
library. It builds on the features offered in the previous labs, and primarily adds in a reliable
publication-subscription service which delivers updates to clients about keys. Pushy also
provides an optional time-to-live on PUT’s, failure-recovery, and an implemented Multi-Paxos
library. We also provide a sample application to demonstrate the functionality of its subscription

service.

2. PubSub

We implement a publish-subscribe service which provides reliable, ordered updates to clients on
changes to keys to which they have subscribed. The service, also called our messagebroker
service, provides a framework for publications to be pushed to each client with a correct ordering
per key to which they have subscribed. Like the shardmaster service, it is implemented as a
single fault-tolerant system using Paxos. The semantic guarantee which our design provides is

that clients receive in all updates about the period for which they are subscribed in the Paxos log.

2.1 Per-Key Ordering Consistency

In order to provide per-key ordering consistency, the messagebroker service maintains a list of
client-key pair subscriptions and the versions of the last successfully pushed update to each
client per key. Because shardkv servers must notify the messagebroker service on every
processed PUT request, the per-key versioning happens with the shardkv servers, such that
any PUT will increment the version number. New publications to clients will then only occur if the

new publication has a version which is one greater than the last successful publication.

2.2 Subscriptions

Though the subscriptions are stored within the messagebroker servers, the key-value storage
(shardkv) servers accept the SUBSCRIBE and UNSUBSCRIBE RPC’s and act as a relay for

clients. Clients who wish to subscribe to a key notify a shardkv server responsible for the key of

1

their intent to subscribe, at which point the key-value group does a round of Paxos to agree upon
the subscription. Once the Paxos instance containing the subscribe action has been decided, the
RPC call can return to the client, even though the subscription has not yet been processed by the
messagebroker service. This reply simply guarantees that the request will eventually get
processed in the correct order of the Paxos log. In order to support out-of-order forwarding from
the shardkv servers to the messagebroker’s, SUBSCRIBE and UNSUBSCRIBE requests must
also update the version number for a key. As with GET and PUT, the SUBSCRIBE RPC provide
at-most-once semantics, because subscriptions may not be idempotent if UNSUBSCRIBE
requests are interleaved or vice-versa. The UNSUBSCRIBE RPC follows the same pattern as the

SUBSCRIBE RPC.

This design adds the overhead of acting as a temporary proxy for clients to the shardkv service,
but shardkv servers already act as proxies for PUT requests, and we believe
SUBSCRIBE/UNSUBSCRIBE requests will be infrequent compared to PUT’s, so the added
responsibility is minimal. This also allows for SUBSCRIBE and UNSUBSCRIBE calls to be
co-located within the shardkv client library, which is the only library that must be distributed to
clients. This library does not need to know about the messagebroker service or servers, but
only about shardkv servers and that a service may push notifications once subscribed, see
Figure 1. Changes to the messagebroker service or server topology will then only affect
server-side code on the shardkv servers, allowing for redeployments of any service, so long as

the APl remains the same and the shardmaster service is available.

ShardKV Library

Client ———» Sarvers

I
|
I
I shardkw
|
I
I
|

messagebroker
Servers

Figure 1. The client only sends RPC'’s to the shardkv service,
but may receive updates from the messagebroker service.

2.3 Non-Blocking Notifications

For every PUT that is processed from the Paxos log, each storage server begins a go-routine to
notify the messagebroker service. This go-routine is only ended when a messagebroker
replies that it has successfully accepted the message, and messages are only accepted by the
messagebroker’s in order of increasing version number. This gives our design the major benefit
of being asynchronous with respect to the notifications. See Figure 2. However, this means that
every storage server will individually pass along the same notification to a messagebroker.
These notifications are filtered out by the service, but this adds to the number of RPC’s which are
called. On a real deployment, a messagebroker within the same datacenter would be

responsible for local groups, reducing network congestion.

Client Shardkv messagebroker

SUBSCRIBE

BUT (&, v}
Publish: SUBSCRIBE fa—

Publish: PUT (A, “v") «— |

Figure 2. RPC messages are forwarded from shardkv servers
to messagebroker servers such that they are not blocking
normal operations.

3. Expiry

Another feature which we provide for is the temporary storage of values on a key. This feature
can be useful for Pushy to act as a cache or as a buffer for large values to be passed from client
to client. When a client calls the PUT RPC, they can specify an amount of time they intend the
value to last within the system, or a time to live (TTL). Every server which is the recipient of a
client RPC, whether GET or PUT, will propose a local read of its own clock along with the intended
operation. Replicas use the timestamps from the Paxos log when applying an operation, instead of
reading its own clock. When applying a PUT with a expiration, server sets expiration time to the
given TTL + proposed timestamp from the Paxos log. When applying a GET, server checks the

expiration time of the key against the timestamp from Paxos log. In this way, values expire

consistently regardless of shard transfers or failures. From the perspective of the client of the

original RPC, values accurately expire after the TTL interval.

4. Multi-Paxos

PushyDB also provides the option to use Multi-Paxos. We implemented Multi-Paxos, conducted
benchmarks, and ultimately chose to remain with regular Paxos. Our implementation of
Multi-Paxos follows a simple approach to leader election: the paxos instance with the highest ID
that isn’'t dead is the leader. All paxos instances ping all other paxos instances regularly, and
instances that do not ping in 2 ping intervals are declared dead. When a leader is elected, only
that leader proposes. The leader does a single round of prepare, and from then on only does
accept rounds. With these optimizations, we found 7-30% performance increases in concurrent

RPC benchmarks, as can be seen in Figure 3.

Paxos vs. Multipaxos benchmarks

160 Bl Multipaxos

Time
Paxos Time
145 [| I

130

lime (seconds)

Ty
uu

Trial

Figure 3. Paxos vs. Multi-Paxos performance in concurrent RPC benchmarks.
Multi-Paxos performs better in all cases.

However, there were drawbacks to our Multi-Paxos implementation. We found Multi-Paxos to use
five times the amount of RPCs (benchmarked with TestRPCCount) on average as a result of
implementing the Push goroutine to drive lagging non-leading instances to catch up. Our

Multi-Paxos implementation also introduced bugs, which would manifest only when used with

other systems. Because of these drawbacks, we decided to use regular Paxos in our final

product.

5. Application

To demonstrate PushyDB, we created two demos. The first demo subscribes to HTTP post
requests from a PushyDB service. The second demo is a full sample application built in Go using
PushyDB.

5.1 Subscription service

The PushyDB subscription service forwards updates on subscribed keys to a specific HTTP
endpoint. This setup is advantageous because the developer can use any technology stack /
language. It would even work with a static page running Javascript. The drawback here is all of
your interactions with the database must be through HTTP requests, which are more
cumbersome than having a direct database connection. In this case, we created a Meteor

application that shows updates to a key in real time.

5.2 Sample web app

The PushyDB sample web app is a simple application built on Martini, a minimal web framework
for Go. Its structure is depicted in Figure 4. Because we use Go, we are able to make direct
PushyDB calls, as well as listen directly to the Receive channel. For any other language, we
would have to write database bindings. From the web backend, we receive and push updates to
the web frontend using a web socket. The demo application allows anyone on the website to

update to a key in the database and receive pushed updates in real time.

Wabsacket

Martini backend (Gao) Web frontend (JS)

v Wab frontend (JS)

PushyDB (Go)

Web frontend (JS)

Figure 3. PushyDB sample web app structure.

6. Persistence
We persist the Paxos log to recover servers from crashes, so long as the disk contents are not

lost. Every time a Paxos server updates an instance (a Propose, an Accept, or a Decided), it

5

saves a copy of the instance to disk. The highestDone value, which represents the instance at
which the Paxos log was garbage collected, is also persisted. On recovery, we read the disk for

persisted data, copy them into memory, and restore the state of the Paxos log.
6.1 LevelDB

We use LevelDB [1], an on-disk key-value store, to persist data. LevelDB allows storage of
arbitrary byte arrays, handles synchronous writes, and supports batched operations. It is
designed to be high performant and supports data access from a single process. We chose to
use LevelDB mainly for its performance and support for synchronous writes, along with

write-ahead logging to preserve the integrity of data [2].

We did however run into three bugs when using goleveldb [3], a third-party Go wrapper around
LevelDB. The first bug we encountered was that we could not close connections to databases
properly, which resulted in failing test cases. Instead, we were still able to emulate separate
databases by sharing a single database for all servers, and prefixing all keys with the appropriate
server name. The second bug related to incorrect behavior when using synchronous writes. We
continued by disabling the option, but this configuration no longer tolerates machine crashes
during a write. Finally, goleveldb occasionally threw nil pointer panics when compacting
data, and we were unable to identify the underlying source. We plan to report these bugs to the

author of goleveldb.

7. Future Work

We believe the feature set given can provide much utility to developers, but continued work would
improve several of the features. First, with more time, we would be able to fix remaining bugs with
Multi-Paxos. Second, alternative embodiments of Paxos are also available, and though we
implemented two variants, EPaxos could reduce the latency of the underlying agreement protocol
on which all consensus in our system relies. We believe that this would provide many gains in our
system, since non-conflicting operations could be processed in parallel much more efficiently.
Third, the failure recovery mechanism could benefit from snapshots of the database state instead
of replaying an entire Paxos log. Fourth, the messagebroker service could be modified to
automatically accept all incoming notifications from the shardkv servers and put the notifications
into a buffer. The messagebroker’s would then decide amongst themselves to whom each
notification can be published and when. It is unclear if this would positively or negatively affect

performance or the RPC count in a real deployment, but would provide for a stronger layer of

abstraction. Finally, an alternative (less buggy) disk-interface could be used, such as those listed
here [4].

8. Conclusion

The primary goal of PushyDB was to implement a reliable publication-subscription service on top
of the key-value service we developed through 6.824 labs. As we demonstrate in the provided
standalone application, this feature is useful for any clients who wish to receive in-order updates
to keys without periodically pinging the database. We also provide for additional features which we
believe may be useful in a database of any kind, such as crash recovery and temporary PUT’s.
Finally, we found improvements to the performance of the paxos protocol by implementing

Multi-Paxos, but have experienced integration issues with this variant.

9. References

[1] LevelDB. https://code.google.com/p/leveldb/

[2] Comment by Sanjay Ghemawat, co-writer of LevelDB

https://news.ycombinator.com/item?id=2526311

[3] LevelDB Go wrapper library. https://github.com/syndtr/goleveldb/

[4] Status of leveldb http://grokbase.com/t/gg/golang-nuts/143tggs 35x/go-nuts-status-of-leveldb

https://code.google.com/p/leveldb/
https://www.google.com/url?q=https%3A%2F%2Fnews.ycombinator.com%2Fitem%3Fid%3D2526311&sa=D&sntz=1&usg=AFQjCNEoJhsgKBIBzk-OWG1BZWtxpEqP8g
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fsyndtr%2Fgoleveldb%2F&sa=D&sntz=1&usg=AFQjCNEoZJIBxsR6bdfAs4KdY4B6a9SECg
http://www.google.com/url?q=http%3A%2F%2Fgrokbase.com%2Ft%2Fgg%2Fgolang-nuts%2F143tggs35x%2Fgo-nuts-status-of-leveldb&sa=D&sntz=1&usg=AFQjCNE_yCLjWbT-u4ZvC083BAzbJTNsXg

