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1 Introduction

The presented project implements a persistent, fault-tolerant, high-performance key/value store. In
order to achieve these goals, the system implements at-most-once semantics, relies upon Paxos for reaching
consensus, shards the database across multiple replica groups, persistently stores values to disk, and im-
plements protocols for automatically recovering and updating disk contents upon server reboot. In order
to improve performance, the system features two paxos optimizations: a protocol similar to multi-paxos to
avoid the dueling leaders problem, and the ability for leaders to send out prepare messages in advance to
reduce the required number of RPCs for paxos agreement.

Extensive testing was done to evaluate the system’s persistence, recovery, and performance by extending
existing tests and creating new ones. After modifying the local RPC system to work on a real network,
the system was deployed on an Amazon Web Services (AWS) cluster to obtain realistic measurements of
throughput, latency, and disk recovery speed.

Source code for this project is accessible at https://github.com/pranjalv123/mexos.

2 Design

The design is based upon the code developed throughout the semester for lab 4. There are therefore
three basic components running on each server: Paxos processes to reach consensus for instances, a shard
master to determine which groups are responsible for various shards of the database, and a shard key/value
storage process to execute client Put/Get requests. The Paxos instances are used to create a consistent log
of operations for both shard reconfiguration and client operations.

Battery tests were run to determine which combination of our prior labs created the fastest and most
reliable starting point. Once a working codebase was compiled, modifications were made to address three
major areas: Paxos optimizations, persistence (with disk recovery), and testing over a real network on AWS.

2.1 Paxos Optimizations

In order to improve the performance of Paxos, we implemented the Multi-Paxos leader selection op-
timization. This optimization solved the dueling leaders problem, preventing us from hanging forever in a
loop between conflicting leaders, and also allowed us to reduce the number of RPC calls that were necessary
to come to agreement, by allowing us to skip the Prepare phase of the Paxos protocol for a leader that was
constant between instances. The main issue with the Multi-Paxos leader selection is ensuring that leader-
ship information is propagated through the system and ensuring that we never agree as part of two separate
partitions when the Prepare phase is skipped. Unfortunately, we discovered a number of implementation
bugs with our default Paxos implementation, which we ended up fixing to end up with a fairly reliable Multi-
Paxos optimized system that had a selected leader and skipped unnecessary prepare phases. The results
were that the number of required RPCs was reduced by about 33%, and that there were reduced bandwidth
requirements due to the singular leadership. There was an issue that a single machine became the primary
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proposer, potentially limiting it based on disk and processor speeds, however this doesn’t appear to be an
issue at the anticipated use cases.

2.2 Persistent Storage

In order to tolerate servers restarting and to handle databases that cannot fit in memory, all three
components of the system store state and data persistently on disk. To interface with the disk, a Go
wrapper for the high-performance C++ key/value library LevelDB was utilized. An outline of what each
system component stores on disk is presented below.

• The Paxos processes write the highest accepted value, the highest accepted proposal number, and the
highest acknowledged prepare request to disk for each instance. This ensures that the protocol will
operate correctly even if a server restarts [3] (for example, a decided value can never be changed). In
addition to this state, the Paxos processes persistently store the done responses received from peers
and the number of the maximum known instance (see the recovery section below).

• The shard master writes every configuration to disk, ensuring that will be able to respond to historical
queries even after restarting. In addition, it stores the highest executed Paxos log entry and the number
of its highest known configuration.

• The shard key/value service writes its database to disk by writing each value as each Put request is
executed. In addition, it must preserve at-most-once semantics and consistency across reboots, so it
persistently stores which operations have been seen as well as the most recent response sent to each
client. It also writes the highest executed Paxos log entry and the current configuration number.

In all cases, the specified data is written to disk before returning to the caller, so any response that a
caller receives from a peer will not be forgotten by the responder even if it restarts. It may be the case that
the responder crashes before sending the response, but this is acceptable since the system offers at-most-once
semantics (so the caller must be prepared to retry and the responder is prepared to filter duplicates).

2.2.1 Recovery from Failures

In order to tolerate servers restarting with or without their disk contents, the system includes protocols
for recovering and catching up on startup. These can be summarized by considering what happens when a
server starts:

• The Paxos process will load any saved done responses and maximum instance number from its disk.
It will then contact peers to request their done responses and maximum instance number, determining
which peer is the most updated out of any peers that respond. From these values, both the ones read
from disk and the ones received, it can determine which instances it should know about but does not;
it then requests these instances from its peers.

• The shard master process will load the highest known configuration and highest executed Paxos log
instance from disk if it exists. It will then request the same information from its peers, determining
who among the responders is the most updated. From this information it can determine if there are
any missed configurations, and if so request them from a peer.

• The shard key/value service will load its last known configuration and the highest executed Paxos log
instance from disk if it exists. It will then request the same information from peers, determining the
most updated state that it should have. Finally, it can request the actual database key/value entries
from a peer (see below for details of how this transfer is performed) along with any client responses
and lists of seen operations.
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These protocols allow any number of servers restarting with their disk contents to catch themselves
up from any updated peer. They also allow any number of servers restarting without their disk contents to
recover the needed data from any peer that has the data.

Single server crashing and restarting, disk intact or lost: As described above, each recovery
process contacts a random replica in the same replica group. The recovering server can then get any missing
data by comparing states with the updated server (e.g. shard data, shard master configurations, and Paxos
instances - note that Paxos only discards old decisions if all participants have marked that sequence number
as ’done’). This will therefore work regardless of whether the disk was lost or simply out of date. Note that
when data is transferred, multiple messages may be used for a single shard if it is too large to fit in memory -
the sender will periodically check memory usage while constructing the reply and mark replies as incomplete
if needed.

Complete crash of all servers: If all servers lose their disk state, then all will restart and begin
like a brand new deployment (the above protocols will simply not find any updated data to transfer). If the
disks are not lost, then the recovery process will read the various states written to disk and pick up where
it left off. Because disk writes take place before any operation commits, data is not lost.

It should be noted that during a shard transfer (including recovery), the shard key/value service on both
the sender and recoverer ignore client requests in order to ensure that consistent data is sent (their databases
cannot be modified except through the recovery process itself). Since their Paxos processes continue running
independently, however, progress can still be made even if a majority of servers is involved in a data transfer
(the decided operations will be persistently logged and the halted servers can catch up when transfer is
complete). This therefore improves performance during recoveries or transfers.

In addition, effort was made to utilize memory in addition to the disk in order to increase performance.
The LevelDB database has the option to use a least-recently-used (LRU) cache to store recently used entries
in memory. In addition, a configuration variable was added to the service to allow values to be written to
memory as well as disk until the memory is full. These two options, combined with the native cache of the
operating system, allow many needed values to be read quickly from memory rather than always consulting
the disk.

2.3 Testing

About 25 new tests were created, and existing ones were extended, in order to evaluate persistent
storage and run on TCP sockets instead of unix file sockets. A few flags and configuration variables can
select different modes (e.g. with and without persistence, RPC using unix file sockets or localhost TCP).

Below are summaries of different located at ’mexos/src/<name>/test test.go’ unless otherwise noted.

paxos: Paxos specific tests which include restarting servers deterministically or randomly. These in-
clude cases where servers lose their disks, where all servers restart, where partitioning changes, where com-
munication is unreliable, and many combinations of the above. There are also benchmarks for measuring
performance.

shardmaster: Shardmaster specific tests which include restarting servers with or without disk to ensure
that persistence and recovery work as expected. There are also benchmarks for measuring performance.

shardkv: Shardkv specific tests which include deterministically restarting servers to ensure that persis-
tence and recovery operate correctly. There is also a test which performs the previously written tests but
with random reboots of random servers or entire groups. There are also benchmarks for measuring shard
transfer speed and to ensure that the simulated memory limit is never exceeded.

test: Tests and benchmarks modified to run on our AWS cluster. Running these tests are the most
complicated, and require the user to SSH into the AWS cluster leader and start the servers on other cluster
machines using ’start-on-all.sh’ to run ’mexos/src/main/start.go’. These tests required a surprising amount
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Vanilla Paxos
Avg. Client Latency Avg. Client Throughput System Throughput

PutHash to one key
1 group, 3 replicas 40.3 ms/op 24.8 requests/s 27 requests/s
1 group, 10 replicas 5370 ms/op 0.18 requests/s 2 requests/s
3 groups, 3 replicas 62 ms/op 22 requests/s

PutHash to many keys
1 group, 3 replicas 40.7 ms/op 24.5 requests/s 30 requests/s
1 group, 10 replicas 282 ms/op 3.5 requests/s 7 requests/s
3 groups, 3 replicas 214 ms/op 4.6 requests/s 67 requests/s

of debugging and glue code. Additionally, to check for correct operation under server failure, backdoor RPCs
were required to tell a remote server to act deaf or dead.

The results of these benchmarks are presented below.

3 Performance

An extensive testing system was created to try and accurately measure performance. This comprises
many new benchmarks, as well as a modified RPC system to run the servers in an AWS cluster and observe
the performance on a real network.

3.1 Server Configuration

Two Amazon AWS clusters were provisioned to test real-life performance of the system. The faster of
the clusters used Amazon’s m3.large instance type, where each server has 7.5 gigabytes of RAM, 2 Intel Xeon
i5 Sandy Bridge CPU cores, and 1 32 gigabyte solid state drive. Real-world network performance, measured
using iperf, was approximately 700 Mb/s. The slower of the clusters used Amazon’s m1.small instance type,
where each server has 1.7 gigabytes of RAM, 1 Intel Xeon Westmere core, and 1 160 gigabyte hard disk
drive. Real-world network performance was approximately 150 Mb/s. Each cluster had one control node
and twelve slave nodes. Instances were allocated on multi-tenant hardware, and nodes within a cluster were
within the same region and availability zone.

3.2 Throughput and Latency

Performance tests were run using both vanilla paxos and multipaxos under a variety of conditions. The
tests were run on an actual network in an AWS cluster.

Client latency : Average time it takes for one client to see a request processed.

Throughput : Number of requests, on average, the client will see processed in a second.

System throughput : Number of requests per second the entire system can handle. This is different
than the client throughput because clients always wait to see the response of the current request before
dispatching another.

System throughput requires a saturation of multiple clients sending continuous requests for a certain
amount of time (here, ten seconds). The system saturated from 10 to 50 clients, depending on the number
of groups/replicas. After the saturation point, adding more clients causes a decrease in throughput because
of network traffic saturation.

Some tests were repeatedly run on one key, and others on a random set of keys. This helps indicate
how the performance changes when requests all go to the same replica group versus when they are evenly
spread across all replica groups.
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Multipaxos
Avg. Client Latency Avg. Client Throughput System Throughput

PutHash to one key
1 group, 3 replicas 27 ms/op 37 requests/s 47 requests/s
1 group, 10 replicas 2360 ms/op 0.42 requests/s 3.4 requests/s
3 groups, 3 replicas 22 ms/op 45 requests/s 45 requests/s

PutHash to many keys
1 group, 3 replicas 25 ms/op 40 requests/s 45 requests/s
1 group, 10 replicas 130 ms/op 7 requests/s 10.3 requests/s
3 groups, 3 replicas 40 ms/op 25 requests/s 124 requests/s

It can be seen that, in all cases, the Paxos optimizations had a significant positive impact on both
latency and client and system throughput. For example, system throughput increased by an average of over
71%.

For a single group case, the difference between three replicas and ten is striking. With more replicas,
more traffic is needed for a paxos agreement and thus latency increases. Figure 1 demonstrates how through-
put suffers as the number of replicas increases. Another interesting effect is that as the number of replicas
increases, the gap between the single key and multi-key cases increases dramatically even when there is a
single group (and therefore all puts touch the same servers).

Figure 1: Performance of a one-group configuration rapidly deteriorates as the number of replicas
increases

Adding more groups, however, increases throughput. For evenly distributed traffic, going from one
group to 3 nearly triples the throughput when using multiple keys (thereby leveraging the additional groups).
Figure 2 shows that this trend continues, such that adding groups linearly improves the throughput of the
system. The table shows that average throughput for a single client may suffer, probably because the system
throughput benchmark creates many clients, while the client throughput test creates a single client; having
multiple clients increases the likelihood that a client must wait to see its request served since the replicas
may be busy serving another client’s request.

3.2.1 Paxos RPC Counts

Utilizing optimizations similar to Multipaxos decreases the number of RPCs needed to reach agreement.
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Figure 2: Performance increases linearly as the number of groups increases. There is probably a
saturation point, but we didn’t have enough cluster machines to reach it.

Paxos RPC Counts
Single Proposer Multiple Proposers

Normal Paxos 30 89
Paxos with Leaders 20 27
Leaders and Pre-prepare 17 20

3.2.2 Disk Recovery

Various tests were performed to evaluate the recovery time for servers restarting. The AWS servers can
either have hard disk drives or solid state drives, and both were evaluated for raw disk speed by writing 1GB
of data to the database. A HDD averaged about 47.7 MB/s while the SSD averaged about 166.6 MB/s. The
recovery was then tested by creating a one-group service, placing 100 MB worth of data in the database,
and finally restarting a replica without its disk contents. Various tests were run with differently sized values
(and therefore differing numbers of entries). In all tests, the memory limit was set to under 75 MB, so that
data transfer was forced to take place using multiple messages.

In these experiments, an average of about 5 messages was sent in order to complete the shard transfers.
In the above table, the database read time is the total time that the sender spent scanning its database to
collect the data needed to be sent. The remaining time is spent transferring the data over the network and
by the receiver writing a copy to disk. It can be seen that this time accounts for the vast majority of total
transfer time when there are many keys, and decreases dramatically as the number of entries is reduced. This
indicates that the main bottleneck is iteration over the database at the sender. The current implementation
uses the built-in LevelDB iterator - future research can be done into how this operates (and into whether the

Recovery Performance for 100MB Database
Value Size (KB) Number of Entries Time Reading Database (s) Recovery Time (s)
5 20352 464.7 473
50 2046 30.8 37.2
100 1023 15.9 21.1
150 682 10.2 15.8
250 409 6.3 12.4
500 204 3.5 10.6
1024 99 1.88 8.3
1500 68 1.4
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Figure 3: Performance increases dramatically as the number of keys is reduced (and the size of entries is
increased).

database is fragmented on the drive) to try and improve performance since the aforementioned measured disk
speeds indicate that it should be able to read the data much faster. Meanwhile, the networking time remains
approximately constant regardless of the number of entries, indicating that the network bandwidth itself is
the limiting factor for RPC time. The fact that the number of messages remained approximately constant
indicates that the recovery protocol does not have significant overhead which depends on the number of keys
but rather is simply limited by memory capacity as desired. As the number of keys decreases, the network
therefore becomes the limiting factor.

3.3 Bottlenecks

Although the above enhancements significantly improved performance, various were identified which
could be addressed in the future.

One notable bottleneck is disk reading and writing. The database library wrapper, LeveDB, offers a
cache as well as compression and is quite fast. However, as discussed previously, benchmark tests revealed
that scanning the database to compile data for shard transfers accounted for a significant portion of total
transfer time. Additionally, in the process of debugging networked RPCs, simple logging was implemented
which slowed down operations by nearly a factor of ten (this was disabled for the above benchmarks); this
was a good demonstration of disk latency and how care must be taken in even mundane aspects of the
system. It was considered adding a commit point marker (similar to the ideas presented in [4]), which would
be straightforward in the current system by simply returning before the disk write and not advancing the
Paxos min until the write completes, but the above measurements indicate that database scanning is much
more significant than isolated accesses. In the future, the improvements can be made to avoid this iteration
bottleneck. For example, the system topology could be altered to allow for more parallelizable recovery
with a procedure inspired by FDS [5]. More simply, however, the servers can be altered to store a separate
database for each shard; the entire database could then be transferred to the receiver using TCP/UDP.
Preliminary tests on AWS showed that a 100MB database can be sent over TCP in less than one second.
In addition, this would avoid the need for either the sender or the receiver to scan through a database, thus
eliminating the major bottleneck identified previously.

Another bottleneck is network capacity and/or number of messages. As shown in the latency and
throughput section, increasing the number of replicas has an adverse effect on performance since each op-
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eration requires communication with a majority of replicas. The paxos optimizations therefore helped to
improve performance, and further optimizations could be made to the data transfer protocols to reduce the
required number of messages.

Increasing the number of replica groups increases the performance of the system for normal operation,
especially under heavy load with evenly distributed key requests. This is especially noticeable in the sys-
tem throughput metric. This arises since number of groups roughly corresponds to how parallelizable the
operations are.

Using multipaxos reduces the amount of network communication required, which improves the through-
put and latency by about a factor of two. Multipaxos also saves some disk space by reducing the amount of
stored paxos state information since prepares are pre-determined.

It is also suspected that using UDP would improve throughput, as servers that do not receive a response
already re-transmit their request, making the TCP acknowledgement system redundant.

4 Conclusion

This project implements, tests, and benchmarks a persistent and performant sharded key/value store.
While there are various improvements and further testing that were not yet implemented, the current system
comprises a working model which demonstrates the effectiveness of its various protocols and optimizations
while revealing the bottlenecks that can be addressed in the future.
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