
Transactions in a Distributed Key-Value
Store

6.824 Final Project

James Thomas, Deepak Narayanan, Arjun Srinivasan

May 11, 2014

Introduction

Over the last several years, NoSQL databases such as Redis, Cassandra and MongoDB
are becoming increasingly popular because of their performance and scalability benefits
over traditional relational databases. Having transactions run on top of a key-value
store allows us to use key-value stores in far more effective ways than previously pos-
sible. For example, transactions enable atomic test-and-set operations and other basic
concurrency primitives.

The main objective of our project was to build a key-value stores capable of sup-
porting cross-shard transactions. We built the functionality on top of the multi-shard
key value store from Lab 4.

Our solution to building Transaction functionality into key-value stores aims at
optimizing performance – we avoided using techniques such as two-phase locking and
two-phase commit – so that the system can stay responsive under considerable load.

System Design

Our design is inspired by Robert Escriva’s Warp system [1]. As in lab 4, we have a
fixed number of shards that are distributed over a variable number of replica groups.

Client API

We support all of the operations from lab 4b and add support for atomic multi-shard
transactions. We tried to design the Client API of our system in such a way so as to
make it as easy and intuitive to use as possible.

• StartTransaction(): This returns a brand new Transaction object to which
operations such as Put, Get and PutHash can be added. The Transaction can
then be committed using the transaction’s Commit() method described below.

1



• Transaction.Get(Key): This method immediately returns the value Value corre-
sponding to the provided key from the key-value server. It also adds a CheckValue(Key,
Value) operation to the list of the transaction’s operations so that when the
Transaction is committed, the servers can verify that the value for Key is still
Value – this ensures that if Put and PutHash in a Transaction are dependent on
the results of Get in the same transaction, then the Transaction will successfully
commit only if the results of those Gets are still valid.

• Transaction.Put(Key, Value): This adds a Put(Key, Value) operation to the
list of the transaction’s operations. The (Key, Value) pair is inserted in the key-
value server only when the Transaction is committed – this ensures that if the
Transaction is aborted (e.g. due to a failed CheckValue), no changes are made to
any server state. However, in order to ensure that Gets in a Transaction can see
its own Puts we store the results of a transaction’s put operations in the client’s
per-Transaction local cache – in the Transaction.Get() method, we first check
to see if a (key, value) pair is in the local cache – only when it is not do we actually
make a Get request to the key-value server.

• Transaction.PutHash(Key, Value): A Transaction’s PutHash operation is very
similar to the PutHash operation from the labs. First the value corresponding
to the provided key is retrieved (let’s call it PreviousValue for convenience)
and then Hash(Value, PreviousValue) is computed and stored in the key-value
store. As before, the PutHash function returns PreviousValue back to the user.
Under the hood, the Transaction object’s PutHash method is implemented as a
Transaction.Get(Key) – to obtain PreviousValue – and then a Transaction.Put
(Hash(Value, PreviousValue)). Thus, if at the commit point PreviousValue is
not longer the value for Key, the PutHash will fail and the entire Transaction
will be aborted.

• Transaction.Commit(): This method returns true if the Transaction success-
fully commits and false if it aborts. A Transaction is aborted if one of its
CheckValues fails or if the first server it is sent to does not own the first shard
in the transaction. If a Transaction successfully commits all of its operation
are guaranteed to have been executed, and if it aborts all of its operations are
guaranteed not to have been executed.

Consistency Guarantees to Client

We make two important consistency guarantees to clients; we will explain in the next
section how these guarantees are achieved.

• Linearizability (external consistency) of transactions – transactions appear to
occur atomically and in an externally consistent order

• Further clarifying A, we ensure observed atomicity – if a Get observes the
effects of a transaction, a subsequent Get cannot observe state that has yet to be

2



updated by the transaction

Server-side Design

Initial Background

A Transaction is sent from the client to the server in the following struct (fields not
important for this discussion have been elided):

type Transaction struct {
RequestId int64
ClientId int64
ShardOps [shardmaster.NShards]ShardOps
Groups [shardmaster.NShards]int64
// the group that handled each shard in the forward pass
CurrentShard int
Dependencies map[RequestKey]DepInfo

}

The entry at index i in ShardOps contains the operations in the Transaction (in
order of appearance in the transaction) that affect shard i.

The client’s Commit() method sends the Transaction to the replica group respon-
sible for the first (lowest-index) shard modified / accessed by operations in the trans-
action. This replica group initiates what we call the "forward pass" portion of the
transaction, in which the Transaction passes through the shards it touches in increas-
ing order of shard index and picks up dependencies on conflicting in-flight transactions.

Before continuing, it is important to describe the key data structure on the server
side: inFlightTransactions [shardmaster.NShards] map[string] map[RequestKey]
InFlightTransactionInfo, which keeps track of dependency information on a per-key
basis. InFlightTransactionInfo is a list of maps, such that each map in the list corre-
sponds to a shard. Each map in this list maps a key served by that shard to another map
called keyTransactionsInfo that contains important per-key dependency information.
For each key, keyTransactionsInfo maps the RequestKeys of transactions that touch
the key to information about the Transaction (including a list of other transactions
the Transaction depends on).

Forward Pass

When a server receives a forward pass RPC for a particular shard as a part of some
Transaction T0, it first commits the operation in its replica group’s Paxos log, applying
all unapplied operations in prior log slots. This ensures that all replicas in the same
replica group execute all operations in the same order.

Assuming that T0 has not already been aborted at a previous shard, it then con-
tinues through the forward pass by executing the following steps:

3



1. It first checks whether it owns the shard; if it does not, it immediately returns,
indicating the error to the caller. The caller then tries to update its config from
the shardmaster, and then try tries to resend the ForwardPass RPC.

2. It then iterates through all of T0’s CheckValues for the shard and verifies them
(makes sure that the key-value mapping is unchanged in the replica’s current
version of the key-value store and also that no in-flight transactions are set to
modify the value at the key); if any of the CheckValues fail, T0 must be aborted
and we skip to step 4

3. For each Transaction operation (a Put for key K and value V) for this shard,
iterate through the inFlightTransactions map for the shard and add any un-
committed (i.e. not yet committed or aborted in the backward pass) transactions
that affect K into T0’s Dependencies set (see the definition for the Transaction
struct above), as long as these transactions are not themselves already depen-
dent on T0 (to prevent dependency cycles). An entry for a Transaction in
inFlightTransactions contains its full set of transitive dependencies (i.e. none
of a Transaction Tx’s dependencies are themselves dependent on transactions
not in Tx’s dependency list), so we can immediately evaluate whether adding a
dependency causes a cycle.
Each dependency is associated with an instance of the DepInfo struct, which sim-
ply holds the operations that the dependency performs at each shard (a copy of the
ShardOps array). We also make T0 dependent on all of the transitive dependen-
cies of these first-level dependencies (since it is possible for T0 and a dependency
T2 of a first-level dependency T1 to affect a key K’ that is not touched by the
T1, and we want to ensure complete linearizability, i.e. T2 happens before T1
happens T0; adding second-level dependencies also prevents dependency cycles),
which, as mentioned before, are all present in the first-level dependencies’ depen-
dency lists. Thus, in assembling T0’s dependency list, we maintain the invariant
that all transitive dependencies are contained in transactions’ dependency lists.

4. We add T0 to inFlightTransactions for all of the keys it affects (including keys
involved only in CheckValues) so that future transactions can be dependent on it.

5. We cede the server’s mutex (it has been held throughout so far), so that more
operations can be committed to the Paxos log and applied, and spawn a new
routine to try to send the Transaction (as well as information about whether it
has aborted) on to the replica group that owns the next shard (in order of shard
index) that it affects. We loop all of the groups listed in our current configuration
until a server tells us that it owns the shard. This loop will never terminate if
a new group has joined and now owns the desired shard (we cannot advance our
configuration to see this new group, as explained below), so we do not currently
support concurrent joins and transactions.

If the Transaction was already aborted at a previous shard, we can skip directly
to step 5.

4



The high-level idea of the forward pass is to validate the CheckValues at all shards
before committing any operations, and simultaneously establish a strict dependency or-
der among conflicting in-flight transactions to ensure linearizability. We ensure that we
do not establish cyclic dependencies by storing a transaction’s full transitive dependency
list, and also by passing through the shards in a consistent order (from lowest to highest
index). Passing through the shards in a consistent order means that if we are about to
make a Transaction T1 dependent on a Transaction T2 at server SR/shard SH, then
if Transaction T2 is already dependent (directly or transitively) on T1, T1 will be
present in T2’s dependency list at SR because T2 must have picked up the dependency
on T1 at a shard prior to SH in the ordering, since T1 can only have previously reached
shards prior to SH. So we will not establish any cyclic dependencies. (One more case
about cyclic dependencies remains to be proven at the end of the description of the
backward pass.)

Backward Pass

Once we have made the forward pass through all of the shards affected by a transaction,
we start the backward pass, where we actually execute the operations of transactions
that were not aborted during the forward pass. The backward pass passes through the
shards in reverse order of shard index.

When a server receives a backward pass RPC for a particular shard that a Transaction
T0 modifies, it first commits the operation in its replica group’s Paxos log, applying all
unapplied operations in prior log slots. (As with the ForwardPass,this helps ensure that
all operations are performed in the same order on every replica in the replica group)
Assuming that the Transaction was not aborted, it then applies the backward pass by
executing the following steps:

1. A Transaction cannot be committed at a shard until all of its dependencies are
committed first. All transactions that modify any of the same keys that the
current Transaction does at this shard (the keys that each dependency modifies
can be determined from the associated DepInfo) and in the current transaction’s
dependency list must have their status in inFlightTransactions be changed to
committed or aborted (which happens at the end of the dependencies’ backward
passes at this shard) before the current Transaction can make progress. While
this spinning occurs, the server’s lock is released to allow further operations to be
added to the Paxos log and applied, which is necessary if progress is to be made
on committing or aborting the dependencies. If we don’t cede the lock, our code
will deadlock and won’t be able to make any forward progress.

2. Once all the dependencies are committed or aborted, we apply all of the Puts in
T0 (with the lock held, of course).

3. We mark T0 as committed in all places in inFlightTransactions where it ap-
pears. We cannot simply remove T0 from inFlightTransactions because trans-
actions that depend on T0 need to know that T0 has been committed when they

5



reach this shard in their backward passes. Marking T0 as committed also ensures
that no new transactions that pass through this shard in their forward passes add
T0 as a dependency.

4. We spawn a new thread to pass the Transaction on to the next shard affected by
the transaction. In the forward pass we store the group ID of the replica group
that handles each shard (see the Groups array in the Transaction struct in part
A of this section), and we know that the replica group will still own the shard
since replica groups cannot transfer away shards for which they have in-flight
transactions (see transfers discussion below).

If T0 was aborted, we can skip directly to step 3 and mark everything as aborted
rather than committed.

A thread on the server the client originally sent the Transaction to, spins and waits
for the backward pass to complete, at which point it notifies the client about whether
Transaction committed successfully or not.

There is one final cyclic dependency case that we must prove is impossible. In
particular, suppose we make Transaction T2 dependent on T1 at a shard Sx. Then
T1 could go on and become dependent at a later shard Sy on a Transaction T3 that
depends (directly or transitively) on T2. One might think that a deadlock would occur
in this case – T2 would spin at Sx in the backward pass waiting for T1 to be committed
or aborted at Sx, but T1 would spin at Sy waiting for T3 to commit, which wouldn’t
happen because its dependency T2 would spin infinitely at Sx. This explanation already
hints at its own flaw – since transactions commit in reverse shard order, T3’s completion
at Sy can only depend on the completion of transactions at Sy or later shards (the
dependencies of T3 simply need to reach Sy for T3 to be committed at Sy). Since
Sy is later in the shard order than Sx, the completion of T3 at Sy cannot possibly be
dependent on the completion of T2 at Sx.

Comments about Paxos Log, Fault Tolerance and At-most once semantics

Since the forward and backward pass operations are put in the Paxos log, every replica
attempts to execute them, and only one of them will come first and actually do useful
work. It is important that we do this so that we can tolerate many machine failures. But
in the case that most machines are working, many extraneous attempts to execute each
forward and backward pass operation will be made, and there will be many extraneous
RPC calls to replica groups controlling later shards in transactions. Thus, we make sure
to properly detect duplicate forward and backward pass operations and return success
to the caller in those cases (we only store results in the duplicates map on success, i.e.
when the shard is owned).

Note that if a ForwardPass RPC succeeds (that is, ForwardPass.Success = true),
then we guarantee that all downstream ForwardPasses / BackwardPasses will execute
at some point since we assume that at all points in time, a majority of replicas in
each replication group remain alive. A similar guarantee is made for BackwardPass
RPCs as well, this ensures that if we see a ForwardPass or BackwardPass that we’ve

6



already processed before, we know we can return Success without having to worry about
re-executing downstream Forward and Backward Passes.

Since we always place an operation in the first available slot in the Paxos log, we
ensure that our Paxos log has no holes, which ensures external consistency.

Shard Transfers

If a transfer of a shard has already started (we propose an InitiateTransfer operation
in the Paxos log to indicate that a transfer is beginning), we do not allow any operations
(within transactions or otherwise) to affect the shard so that the recipient of the shard
never sees a stale copy – that is, as soon as a Transfer is initiated, we stop serving
requests to that shard until the Transfer has been completed.

In addition, we don’t allow transfers to be initiated until there are no more in-flight
(uncommitted) transactions for a shard. This ensures that if a replica group handles a
shard on the forward pass, it will still own that shard during the backward pass, a fact
that the backward pass logic depends on. This means shard transfers are generally slow
to happen and replica groups cannot move through configs quickly, but we think this is
a reasonable assumption to make – in real systems, config changes are fairly infrequent.

Handling of Non-Transaction Puts and Gets

We essentially turn non-Transaction puts and gets into one-operation transactions
that wait out any in-flight transactions that affect their keys, since these transactions
may expect that the key state will be unchanged when they return to this shard for
the backward pass (i.e. they have CheckValues for this key) – if Gets and Puts did
not respect the per-key dependency information stored in inFlightTransactions, then
we would reach a state where a Transaction already validated in the ForwardPass
would become invalid (because CheckValues no longer return true), but since we do no
validation whatsoever in the BackwardPass, we would be oblivious to this invalidation
and transactions would up committing with wrong results.

Non-Transaction Puts and Gets are also entered into inFlightTransactions so
other transactions or Puts/Gets become dependent on them. In particular, it is impor-
tant for gets to be dependent on in-flight transactions so that if one get shows that a
Transaction has happened, then a subsequent get cannot show state from prior to the
execution of the Transaction (this is our second guarantee to clients).

Comparison to Other Approaches

One common way to add Transaction support to a system is to use two-phase commit
and two-phase locking. We claim that our approach is more efficient than two-phase
commit because there are fewer messages sent between the client and server machines.
In particular, in two-phase commit, if a replica group is sent a Transaction T1 that
modifies a particular key and has already committed to another Transaction T2 that
modifies that key, it will send a failure message back to the client and the client will have

7



to retry T1 later. In our design, T1 will simply sit at the replica group waiting for T2
to complete execution – the client-server network latency is not incurred, and the client
does not have to devise policies for when to retry. In short, with our design, aborts
happen only when absolutely necessary – when a CheckValue fails (or when the server
the Transaction is initially sent to does not control the first shard in the transaction, an
uncommon case). Two-phase commit may be necessary for more complicated relational
data models, but in the key-value store case it appears that more efficient protocols are
feasible.

Testing Approach

We wrote a number of tests to convince ourselves that our implementation indeed works.
We describe these tests in greater detail below.

• Basic test: This test aims at making sure that all the basic Transaction func-
tionality works as expected. We sequentially execute all the basic operations –
Gets, Puts, PutHashes and Moves – among other things, this ensures that we
can test if all state that needs to be passed on between Shards during transfers is
being passed on correctly.

• Limp test: Multiple servers in each replica group are killed at random, to make
sure that progress with operations can be still made even without every server in
a replica group being alive.

• TestAndIncrement: In this test, multiple threads try to read a value corre-
sponding to a particular key and then increment that value by 1. By initializing
the value corresponding to that key to be initially 0, we can check if our system
correctly implements TestAndSets by ensuring that the final value corresponding
to the key equals the number of threads.

• Multi-Shard invariants: In this test we try to test the atomicity of Transaction
operations. By checking if dependencies across multiple shards are maintained we
can show that Transaction operations cannot interleave with each other (for ex-
ample Transaction 1 executes before Transaction 2 on shard 1 but Transaction
2 executes before Transaction 1 on shard 2).

We first set up an invariant across multiple keys split across multiple shards – for
example the sum of values corresponding to the keys is a certain value. Multiple
threads then make modifications to the values stored in the key-value store such
that each modification still respects the global invariant that the sum of all values
is a constant. At the end of the multiple concurrent updates, we check to see if
the global invariant across the multiple keys still holds.

• Concurrent: This test is very similar to the staff-provided Concurrent test –
it attempts to interleave transactions containing Puts, Gets and PutHashes with
Moves – all of these operations are attempted simultaneously in multiple threads.

8



In addition, to make sure that normal Puts, Gets and PutHashes cannot interleave with
operations part of a Transaction, we had to tweak our implementation of the standard
Get, Put and PutHash operations (this is described in greater detail in the previous
section). To make sure that we didn’t suffer a regression in functionality, along with
the new Transaction tests we introduced, we also ran the Lab4b tests.

Applications

Cross-shard and cross-table atomic transactions have a number of useful applications.
One example is with derived tables – tables whose data / contents are "derived" from
other base tables. Updates to records stored in the base tables would need to be
propagated to the derived tables atomically as well – in such a scenario, cross-table
atomic transactions really help in preventing multiple tables with the same data going
out-of-sync from each other. Some examples of derived tables include reverse indices
(here the "base" table would be the primary index, and any change to the primary
index would need to be reflected in the reverse index) and the Bids and Items example
presented in the Lynx paper (where Items contains a consolidated list of all objects and
Bids contains the bidding history for each object)

Future Work

Over time, the inFlightTransactions data structure stored at each server in our dis-
tributed key-value system can become arbitrarily large as more transactions are com-
mitted. We can remove all information about a Transaction in inFlightTransactions
once all transactions that have dependencies on that Transaction complete their Back-
wardPass. We refer to the process of removing information about already committed
transactions garbage collection. Due to a lack of time, we haven’t yet implemented
garbage collection in our system, however this remains one of our major priorities for
future work.

For reasons highlighted above, our system also doesn’t allow Joins to be executed
concurrently with transactions (we currently only support Moves and Leaves) – tweaking
our protocol to support this feature is another area for future work. Finally, we are very
interested in comparing our approach in terms of performance with other approaches
such as two-phase commit – time didn’t allow us to actually implement a solution that
used two-phase commit. Such an exercise could lead to extremely interesting results
since all such results would be quantitative instead of purely qualitative – we would be
able to run the different solutions on multiple benchmarks to see how the two approaches
match up with each other.

9



References

[1] Warp: Multi-Key Transactions for Key-Value Stores. Robert Escriva, et. al.. Tech-
nical Report, Nov 2013.

10


