
Barista: A Distributed, Synchronously

Replicated, Fault Tolerant, Relational Data

Store

Anant Bhardwaj
anantb@csail.mit.edu

Rebecca Taft
rytaft@mit.edu

Manasi Vartak
mvartak@mit.edu

David Goehring
dggoeh1@mit.edu

MIT Computer Science & Artificial Intelligence Laboratory
6.824: Distributed Systems (Spring 2014)

Abstract

Barista is a distributed, synchronously replicated,
fault tolerant, relational data store. It runs as
a middleware service over database instances to
provide an abstraction for a distributed relational
data store. The data is replicated across a set of
Paxos state machines to provide fault-tolerance
and strong consistency. The real-time replication
provides high availability; clients automatically
failover between replicas. Barista supports SQL
for data management. Client applications can
use Barista with the same SQL code they used
before.

1 Introduction

Barista is a middleware layer written over
PostgreSQL [2] (Postgres). It replicates the
data over multiple Postgres instances to provide
fault tolerance. All writes are propagated
synchronously using Paxos [7]. Barista pro-
vides strong consistency. Clients automatically
failover between replicas. Barista exposes SQL
for client applications.

The main contributions of this project are
as follows.

A relational data store with the following
guarantees:

1. ACID: Barista provides ACID guarantees.
It can be used as a database backend for
any JDBC-compliant application.

2. Fault Tolerance and Recovery: Barista can
tolerate b(b − 1)/2c faults and recover from
server crashes by catching up the state of the
crashing servers. It can also tolerate b(b −
1)/2c disk failures and recover by bringing
the new disks up-to-date.

Cross-Language support by providing
Thrift bindings for the APIs: Barista APIs
can be used in all the popular languages. We
have provided sample client code for Go, C++,
Java, Python, and JavaScript.

State Safety with ZooKeeper: All the
running states of the system are stored in
Apache ZooKeeper. ZooKeeper’s atomic Read()
and Write() APIs provide a safe mechanism
for writing/reading system states. The states
are necessary for recovering from various
crashes/failures. Also, ZooKeeper provides an
efficient way for log purging.

Evaluation with the TPC-C Bench-
mark: We implemented the industry standard
TPC-C benchmark to evaluate the throughput
and latency of client operations in a real-time
scenario with our system. We describe this in
detail in section 4.

Performance Optimizations: We made
the following optimizations to our paxos-
based protocol by implementing a version of
Multi-Paxos [9]:

1. Avoid 2 round-trips per agreement by hav-
ing a server issue Prepare messages ahead of
time

2. Avoid dueling leaders under high client load
by using a designated leader.

A Comprehensive Test Suite: To test Barista
in a range of scenarios including concurrent client
requests, network partitions, duplicate requests
and machine failure, we wrote a set of automated
test cases modeled after the tests from Labs 2, 3
and 4. The tests run on multiple Postgres in-
stances on the same machine. The tests instan-
tiate a number of Barista servers and clients and
perform various combinations of operations in-
cluding opening connections, executing arbitrary

1



SQL queries and closing connections. We test
that the queries are applied in the same sequence
across all replicas. Our test cases cover vary-
ing numbers of DB connections, different SQL
queries and failure scenarios. We also test three
recovery scenarios: (1) where a server restarts
with disk intact, (2) server restarts without disk
and (3) server restarts in the middle of a paxos
agreement.

2 Implementation

Barista runs as a middleware service above each
database instance. It intercepts client requests
to the database. These requests include opening
and closing a database connection, beginning and
ending a transaction, and executing SQL queries.

2.1 Paxos Agreement

Once a client request arrives, the service ini-
tiates a paxos agreement between the replicas
to get consensus on the slot-id in the paxos
log for the client request. This ensures that all
replicas agree on a single ordering for the client
requests. The paxos state and logs are stored in
Apache ZooKeeper so that in case of a failure,
a recovering machine or a replacement machine
can reconstruct its state.

As opposed to gets and puts, Barista sup-
ports the core operations required to interact
with a database, namely: opening and closing
connections to the database; starting, commit-
ting and rolling back transactions; and executing
queries. Each of these operations is tracked in
the paxos log. Since the presence of replication
must be transparent to clients (and therefore
they must not need to connect to different
instances separately), we track the opening and
closing of connections in the log in addition to
query operations.

2.2 Enforcing the ordering on
Postgres

PostgreSQL is a non-deterministic database.
This can cause transactions to appear in a dif-
ferent order than the order agreed upon by the
replicas during paxos-agreement. This is because
Postgres is multi-threaded and transactions can
run as different threads. The threads might get
scheduled in any order and thus the commit or-
der can be different from the order in which the
transactions were submitted. To work around
this, we do not allow more than one pending re-
quest on any replica. Before submitting a new
query to the db, Barista makes sure the last

one has returned. This is done by synchroniz-
ing database calls with a lock. This affects the
performance in terms of number of client requests
per second, but makes consistency and recovery
easier.

2.3 State Safety

We use Apache ZooKeeper for Paxos state
safety. Apache ZooKeeper provides a distributed
configuration service for maintaining configura-
tion information for large distributed systems.

For each paxos instance there is a
node in the ZooKeeper with the path
/barista/paxos/machine_name/{seq_num}

= Paxo {N_P, N_A, V_A, Decided}. The
paxos instances update the state by calling
Set(path, value) API. ZooKeeper’s Write()

and Read() APIs are atomic which guarantees
consistency. The following is a bit of sample
code that updates the state of a paxos instance:

px.path = "/paxos/" + px.Format(px.peers[px.me])
...
...

if args.N_A >= paxo.N_P {
paxo.N_P = args.N_A
paxo.N_A = args.N_A
paxo.V_A = args.Value
reply.Status = OK

} else {
reply.Status = REJECT

}

if px.use_zookeeper {
px.Write(

px.path + "/store/" + strconv.Itoa(args.Seq), paxo)
} else {

px.store[args.Seq] = paxo
}
...
...

We also do write-ahead logging of database
operations. The log is stored as a path
(/barista/sqlpaxos/machine_name/{seq_num})
in Apache ZooKeeper. We call this log sqlpaxos

log. The write-ahead logging allows us to run
paxos agreement for multiple client queries in
parallel.

We maintain an application pointer (AP)
to track the last transaction that has been
applied to the database for each replica. The
update to AP and the actual transaction must
be atomic – thus this state variable can’t be in
a log file outside the database. We maintain a
table called sqlpaxoslog (lastseqnum int)

that tracks the Application Pointer (AP) for
that Postgres instance. We change each client
transaction by adding the AP update as part
of the transaction itself to achieve atomicity.
The AP is used to recover the database state as
discussed in the recovery section.

2



2.4 Log Purging/Garbage Collec-
tion:

When paxos.Done() from other peers up-
dates paxos.Min() – all paxos instances in
ZooKeeper with seq_num < paxos.Min()

are purged. This is done by removing all
/barista/paxos/machine_name/{seq_num}

nodes if the {seq_num} < paxos.MIn().

We garbage-collect sqlpaxos logs by deleting
/barista/sqlpaxos/machine_name/{seq_num}

nodes if the {seq_num} < Global AP. The
Global AP is the sequence number below which
all the operations have been applied on all the
replicas.

The purging allows us to keep the ZooKeeper
logs small.

2.5 Multi-Paxos Implementation

We present an implementation of Multi-Paxos
that builds on the Paxos algorithm/system. The
system automatically selects one of the paxos
replicas as the leader (via paxos) who serves as
the distinguished proposer for future paxos in-
stances until a new leader is elected (i.e. the old
one was detected as failed). Leader reigns are
broken into epochs specified by an epoch number,
a strictly increasing number that demarcates the
successive leaders. Once a leader is elected, only
that replica can make proposals which allows for
two optimizations: 1) reduced contention when
attempting to reach agreement on a particular
paxos instance and 2) the leader only needs to
send Accept and Learn messages instead of the
going through the traditional Prepare/Accept
phase of the normal paxos algorithm. Thus, in
the common case where the leader remains rela-
tively stable and reachable by a majority of the
replicas for a long period of time, these optimiza-
tions allow for increased performance and shorter
agreement latencies for state machines built on
top of this Multi-Paxos system.

2.5.1 Normal Case Design (Stable
Leader)

The core algorithm of the Multi-Paxos (MP) sys-
tem is quite simple. The system starts off at in-
stance -1 and elects a leader in this instance using
traditional Paxos before processing any later in-
stances (i.e. initiating Paxos agreement for any
later instance). Once a leader is elected, the
leader becomes the distinguished proposer for the
Multi-Paxos system in that it is the only replica
with authority to make new proposals on behalf
of clients and mutate the Paxos log during its

reign. Since only the leader can issue new pro-
posals, this allows the following optimizations:

• Elimination of the dueling proposers prob-
lem encountered by normal Paxos.

• The leader only needs to send Accept mes-
sages to a majority of the Paxos replicas and
can completely skip the Prepare phase (this
is called FastPropose).

The correctness of the first property is obvious,
but correctness for the second property is proved
by the following invariants that ensure correct-
ness even in failover and unreliable communica-
tion scenarios:

1. Leader reigns are broken into epochs, a
strictly increasing number that demarcate
the successive leaders.

2. The replica with the highest epoch number
associated with it is currently the true leader
in the system

3. All Accept messages from previous leaders
(who may not know they are no longer the
leader) with lower epochs will be rejected

4. Leader transitions occur one at a time (i.e.
cannot jump from leader 1 to leader 10)

5. The operations that a leader can contribute
to the log are the operations between its
leader election operation with epoch i and
the first appearance of a leader election op
with epoch i+1 (election of the next leader)

6. After a leader with epoch i has been pro-
cessed any operations that may have been
agreed upon by an earlier leader (with epoch
0..i − 1) after that slot in the paxos log are
invalidated and the new leader owns them.

7. The result of agreement for instance j is
not exposed to the Multi-Paxos API user
(via Status) until the results of instances
for 0..j − 1 are all known because the result
may be invalidated if a leader election was
agreed upon in that range (the old leader ap-
proved it because instance agreements can
be pipelined, but in that time the leader be-
come unresponsive and so the other replicas
may have initiated leader failover at an ear-
lier slot to avoid the state where there is no
leader)

These invariants ensure that leaders can only mu-
tate parts of the log corresponding to their reign
and that operations are not exposed as agreed
upon until they have actually been solidified by
the current leader (no leader change op occurred

3



before a propose op that was accepted by the ma-
jority from the current leader, the leader change
op would have ended its reign and made that
agreed-upon op invalid). Thus, the Multi-Paxos
API only exposes operations proposed by the
current leader and not contended by a leader
change (for correctness during leader change see
the failover section).

The way these invariants are enforced is actu-
ally done by running a state machine on top of
the original Paxos library (with a few modifi-
cations to support FastPropose for the leader).
This state machine processes the paxos log and
leader change events to ensure that no operation
is exposed as agreed upon before it actually is.

Finally, since only the leader can propose new
values, client requests made to non-leader repli-
cas are forwarded to the leader for agreement us-
ing one additional RPC (in the unreliable case
the system retries until it gets through to the
current leader at least once and as it is retrying
it can also process leader change ops so that the
forwarded requests are sent to the correct leader).
The reason for this is that we wanted to encap-
sulate the leader in Multi-Paxos and not expose
it to users of the API so that they can treat it
like normal Paxos. Furthermore, the additional
overhead incurred by forwarding is minimal since
these non-leader replicas are mostly sitting idle
(just waiting for leader Accept messages and not
proposing anything themselves). However, there
is one difference between the Multi-Paxos and
Paxos API. Since the Multi-Paxos system uses
the Paxos log for its leader agreement operations,
some instances cannot be used by the client state
machine. In these cases, Status() will return re-
turn true,Nil in which case the user will know
that the instance has been taken by a leader
election op (without exposing it) and can treat
this like a NOP (ignore it and move on). Gener-
ally, a major design goal of our Multi-Paxos algo-
rithm/implementation was to keep the API the
same as normal Paxos used in the labs and en-
capsulate leader election so that API users don’t
have to think about it.

The Multi-Paxos code is located here: https:

//github.com/abhardwaj/barista/tree/

multipaxos/src/server/src/multipaxos (on
a branch on barista).

2.5.2 Failover and Catch Up Protocol

All Multi-Paxos replicas ping the replica that
they think is the leader every PINGINTERVAL
milliseconds (note that some replicas may be be-
hind and not know who the current leader is or
may be pinging an old leader). Pings are also
used to bring lagging replicas up to speed. In

the ping request the replica sends the maximum
instance that it knows about, and in the reply the
leader returns the instances between that num-
ber and the maximum instance its knows about.
The pinging replica then updates its instance log
using the data retrieved from the leader. This is
used in case the replica missed notification mes-
sages and increases the speed at which a failed
replica can be brought back up to speed. Fur-
thermore, since only the leader is sending Ac-
cept/Learn messages, maximum done values of
each replica are also piggy-backed on the ping
RPC. This allows the leader to calculate the ear-
lier instance that cannot be discarded (Min())
and relay that to the replicas using the reply to
the ping RPC. Finally, if a replica detects that
the leader has missed NPINGs then that replica
does two things:

• Sends a quick round of find leader RPCs to
all the paxos replicas that return a (leader
address, epoch) pair. The current replica
takes the reply with the max epoch number
and if that number is greater than the epoch
of its current leader it pings that leader and
requests all paxos instances between the last
instance it processed and the max the new
leader has processed and then processes all
these instances.

• If the first start returned no leader then the
replica initiates leader failover using paxos
with an epoch number that is 1 greater than
its current leader.

The first phase is to prevent wasting time on
paxos agreement if a leader was selected but the
replica is just behind. In which case the ping to
the new leader brings that replica up to speed
in one RPC. The second phase is to start leader
transition and in essence lock the old leader out,
because when a replica receives a Prepare with
a higher epoch number, it updates its internal
epoch number and stops accepting Accept mes-
sages with a lower epoch number. This is to guar-
antee that the old leader, if it is still alive, real-
izes that it’s dead, and if it still has in-progress
proposals, they cannot overwrite a leader change
proposal that’s been agreed upon. Furthermore,
if the current leader already got a majority to Ac-
cept on an instance, the normal Paxos algorithm
ensures that the failover does not overwrite this
already accepted value. The leader failover pro-
cess (both phases) stops when a leader change op
with an epoch number 1 greater than the current
leader’s epoch is processed by the Multi-Paxos
replica (i.e. the correct leader change was agreed
upon). One additional benefit of this system is
that if the leader gets overloaded with requests

4

https://github.com/abhardwaj/barista/tree/multipaxos/src/server/src/multipaxos
https://github.com/abhardwaj/barista/tree/multipaxos/src/server/src/multipaxos
https://github.com/abhardwaj/barista/tree/multipaxos/src/server/src/multipaxos


and crashes, the entire system can transfer lead-
ership to an idle replica with a single round of
paxos, thus giving time for the original leader
to recover and rejoin the paxos group (in a way,
distributing the load across all servers).

2.6 Recovery

Recovery from crash & restart (no disk
failure): The paxos state is recovered by read-
ing the saved states from the ZooKeeper. The
ZooKeeper Get/Set APIs are atomic which en-
sures that the entire state can be recovered con-
sistently. Below is a snippet that shows how we
recover Paxos state for a particular slot:

px.path = "/paxos/" + px.Format(px.peers[px.me])
...
...
if px.use_zookeeper {

paxo, ok = px.Read(
px.path + "/store/" + strconv.Itoa(args.Seq))

} else {
paxo, ok = px.store[args.Seq]

}
...
...

The sqlpaxos write-ahead logs don’t have any
state other than the application pointer (AP).
The AP is updated as the part of the transaction
itself in the database and thus can be recovered
by reading the sqlpaxoslog (lastseqnum int)

table in the database. Paxos fills holes in its log
to ensure that everything after the AP can be
retrieved as part of the paxos protocol.

Recovery from disk failure: This re-
covery is slow and requires some manual steps.
To recover from a complete disk wipe out, we
provide a script that copies the database data
files from a {healthy_machine}. The recovery
requires that the {healthy_machine} is not
serving any request during the recovery because
if it serves a new request it will change its
state during the recovery and would lead to
inconsistent data transfer.

3 Client APIs

Barista APIs are exposed as a Thrift IDL file
(barista.thrift). Thrift [5] is a framework for
scalable cross-language services development. It
combines a software stack with a code generation
engine to build RPC services that work efficiently
and seamlessly between C++, Java, Go, Python,
Ruby, JavaScript, and various other languages.
A Thrift IDL file is processed by the Thrift code
generator to produce code for the various target
languages to support the defined data types and
services in the IDL file. Although we are imple-
menting Barista in Go on the server side, clients
can be implemented in any language. We have

provided sample client code in Go, C++, Java,
Python, and JavaScript.

3.1 Barista Client APIs

Below is the list of data types and methods avail-
able to client applications through barista.thrift :

/* Barista constants */

// version info
const double VERSION = 0.1

/* Database Connection */

// connection parameters
struct ConnectionParams {

1: optional string client_id,
2: optional string seq_id,
3: optional string user,
4: optional string password,
5: optional string database

}

// connection info -- must be passed in every
execute_sql call
struct Connection {

1: optional string client_id,
2: optional string seq_id,
3: optional string user,
4: optional string database

}

/* ResultSet */

// A tuple
struct Tuple {

1: optional list <binary> cells
}

// A result set (list of tuples)
struct ResultSet {

1: required bool status,
2: Connection con,
3: optional i32 row_count,
4: optional list <Tuple> tuples,
5: optional list <string> field_names,
6: optional list <string> field_types

}

/* Barista Exceptions */

// Database Exception
exception DBException {

1: optional i32 errorCode,
2: optional string message,
3: optional string details

}

/* Barista RPC APIs */

service Barista {
double get_version()

Connection open_connection (1: ConnectionParams
con_params)

throws (1: DBException ex)

ResultSet execute_sql (1: Connection con, 2: string
query,

3: list <binary> query_params) throws (1:
DBException ex)

ResultSet execute_sql_txn (1: Connection con, 2:
string query,

3: list <binary> query_params) throws (1:
DBException ex)

void begin_txn (1: Connection con)
throws (1: DBException ex)

void commit_txn (1: Connection con)
throws (1: DBException ex)

void rollback_txn (1: Connection con)
throws (1: DBException ex)

void close_connection (1: Connection con)
throws (1: DBException ex)

}

3.2 A Sample Python Client

Barista RPC stubs for Python can be generated
as follows:

thrift --gen py barista.thrift

5



Once RPC stubs are generated, a python pro-
gram can call Barista APIs. Below is a sample
client code snippet in Python:

transport = TSocket.TSocket(’localhost’, 9000)
transport = TTransport.TBufferedTransport(transport)
protocol = TBinaryProtocol.TBinaryProtocol(transport)
client = Barista.Client(protocol)

transport.open()

con_params = ConnectionParams(
user="postgres", password="postgres",

database="postgres",
client_id="1234567890", seq_id="1")

con = client.open_connection(con_params)
res = client.execute_sql(con=con,

query="SELECT 6.824 as id, ’Distributed Systems’ as
name",

query_params=None)

print "\t".join(res.field_names)
for tuple in res.tuples:

print "\t".join(tuple.cells)

client.close_connection(con)
transport.close()

4 Evaluation

In order to test the performance of our system,
we implemented the TPC-C benchmark [3],
an industry standard for comparing the per-
formance of OLTP database systems. TPC-C
simulates the operation of a wholesale parts
supplier, in which a population of terminal
operators executes a set of transactions against
a database. These transactions include moni-
toring the stock level of a warehouse, creating
a new order for a customer, accepting payment
from a customer, making a delivery to a set
of customers, and checking the status of an
order. Clearly, the intent of this benchmark is
to simulate a realistic real-time OLTP system.

The TPC-C specification is quite complex,
so rather than implementing it ourselves, we
modified an existing open-source implementation
for PostgreSQL [1]. The open-source implemen-
tation uses C code to communicate directly with
the database, so in order to test our replicated,
fault-tolerant framework, we needed to modify
this code to communicate via the Barista client
instead. Fortunately, Thrift allows us to create
clients in several different popular programming
languages, so we created a C++ Barista client
and linked it with the modified C benchmark
code. In this way, we were able to compare
the performance of our fault-tolerant, replicated
version of PostgreSQL with vanilla PostgreSQL.
The results of running TPC-C on Barista (with
standard Paxos and Multi-Paxos variants) and
vanilla PostgreSQL are shown in tables 1 to 3.

As expected, vanilla PostgreSQL performs
better than Barista since it does not require
paxos agreement for each transaction. However,
the performance of Barista is still impressive

given that each transaction can take 5-8 paxos
agreement instances, and each paxos agreement
instance can require up to 20 round-trip mes-
sages between replicas. Despite this overhead,
Barista only increases latency by about 4-5X and
barely decreases throughput at all. Furthermore,
the average round-trip time between our virtual
machines is 0.9 ms, so given the number of
messages passing between machines, an added
latency of a few hundred ms is reasonable. In
addition, Barista is extremely fault tolerant
while vanilla PostgreSQL relies on a single point
of failure.

Theoretically, Multi-Paxos should perform
faster than traditional Paxos due to the en-
hancements described (primarily the reduced
contention and number of messages needed for
agreement) which produce smaller latencies.
Generally, for an N replica system the number
of messages required for agreement is 2(N-1),
N-1 Accept and Learn messages to other servers
from the leader. This is much smaller than
1) the 3(N-1) messages required in the case of
a single normal Paxos proposer (N-1 Prepare,
Accept, Learn messages) and 2) a possibly
unbounded number messages in the case of
dueling proposers. In our 5 replica system this
translates to 8 RTTs instead of 12 for the best
case. Thus, since the total number of round
trips for agreement is minimized, the total end
to end latency for a particular operation is also
minimized. However, the results indicate that
performance is comparable to normal paxos
despite the performance improvements. This
could be a result of the increased overhead of
pinging the leader and updating replicas over
a ping. However, we are still investigating why
the performance of Multi-Paxos is not as high
as it should be.

5 Related Work

Synchronous replication schemes for PostgreSQL
have been explored in the literature. The main
challenge is ensuring that transactions are com-
mitted in the same order on all replicas. In our
work we assume that there are no distributed
transactions. One method to accomplish consis-
tent ordering is 2 phase commit [4] across all
replicas – however, this requires all replicas to
be alive and communicating at all times, thus
nullifying any benefit from Paxos. Moreover,
2 phase commit significantly increases latency.
Systems like H-store [6] adopt a concurrency
protocol that is defined by having one thread
of execution per data partition and thus elim-
inating locking in single-partition transactions.

6



Response Time (s)
Transaction % Average 90th % Total Rollbacks %

Delivery 3.99 0.137 0.218 61 0 0.00
New Order 43.82 0.160 0.508 670 6 0.90

Order Status 2.88 0.218 0.903 44 0 0.00
Payment 40.35 0.172 0.606 617 0 0.00

Stock Level 2.81 0.220 0.901 43 0 0.00

Table 1: Results from running the benchmark for five minutes on a single, non-replicated instance of
PostgreSQL

Response Time (s)
Transaction % Average 90th % Total Rollbacks %

Delivery 3.48 0.766 2.407 50 0 0.00
New Order 45.06 0.733 2.325 648 5 0.77

Order Status 3.34 0.568 2.191 48 0 0.00
Payment 37.90 0.698 2.332 545 0 0.00

Stock Level 4.10 0.851 2.528 59 0 0.00

Table 2: Results from running the benchmark for five minutes on Barista with standard Paxos

Response Time (s)
Transaction % Average 90th % Total Rollbacks %

Delivery 3.96 0.806 2.482 57 0 0.00
New Order 44.69 0.948 2.508 644 4 0.62

Order Status 2.78 0.756 2.069 40 0 0.00
Payment 39.69 0.719 1.997 572 0 0.00

Stock Level 2.91 0.762 2.240 42 0 0.00

Table 3: Results from running the benchmark for five minutes on Barista with Multi-Paxos

7



In a synchronous replication scheme, the equiv-
alent would be to only execute one transaction
at a time on each replica and start the next one
only after the current transaction finishes. An-
other technique that has been explored on un-
replicated systems is speculative execution [8]
where the system runs subsequent transactions
even before the current one has finished. It is
likely that some of these transactions may have
to be redone based on the results of the current
transaction. In our scenario, we want to avoid
having to undo transactions. We can get the ben-
efit of speculative execution instead by batching
non-conflicting transactions. Some systems also
adopt the technique of using a pre-processor that
determines the serial order of all transactions and
transactions must request locks in the same or-
der. The Paxos log can help with creating a uni-
versal order of transactions.

6 Supplementary Materials

• Source Code: https://github.com/

abhardwaj/barista

• Benchmark Code: http://people.

csail.mit.edu/anantb/files/barista/

6.824/

References

[1] Database Test Suite: DBT-
2 OLTP Benchmark.
http://sourceforge.net/apps/mediawiki/osdldbt/.

[2] Postgresql. http://www.postgresql.org.

[3] TPC Transaction Processing Performance
Council: TPC-C OLTP Benchmark.
www.tpc.org/tpcc/.

[4] Two-phase commit protocol.
http://en.wikipedia.org/wiki/Two-
phase commit protocol.

[5] Agarwal, A., Slee, M., and
Kwiatkowski, M. Thrift: Scalable
Cross-Language Services Implementation.
Tech. rep., Facebook, 2007.

[6] Kallman, R., Kimura, H., Natkins, J.,
Pavlo, A., Rasin, A., Zdonik, S., Jones,
E. P. C., Madden, S., Stonebraker, M.,
Zhang, Y., Hugg, J., and Abadi, D. J.
H-store: A High-performance, Distributed
Main Memory Transaction Processing Sys-
tem. Proc. VLDB Endow. 1, 2 (Aug. 2008),
1496–1499.

[7] Lamport, L. The Part-time Parliament.
ACM Trans. Comput. Syst. 16, 2 (May 1998),
133–169.

[8] Lampson, B. W. Lazy and Speculative
Execution in Computer Systems. In Pro-
ceedings of the 13th ACM SIGPLAN Inter-
national Conference on Functional Program-
ming (New York, NY, USA, 2008), ICFP ’08,
ACM, pp. 1–2.

[9] Prisco, R. D., Lampson, B. W., and
Lynch, N. A. Revisiting the Paxos Al-
gorithm. In Proceedings of the 11th In-
ternational Workshop on Distributed Algo-
rithms (London, UK, UK, 1997), WDAG ’97,
Springer-Verlag, pp. 111–125.

8

https://github.com/abhardwaj/barista
https://github.com/abhardwaj/barista
http://people.csail.mit.edu/anantb/files/barista/6.824/
http://people.csail.mit.edu/anantb/files/barista/6.824/
http://people.csail.mit.edu/anantb/files/barista/6.824/

	Introduction
	Implementation
	Paxos Agreement
	Enforcing the ordering on Postgres
	State Safety
	Log Purging/Garbage Collection: 
	Multi-Paxos Implementation
	Normal Case Design (Stable Leader)
	Failover and Catch Up Protocol

	Recovery

	Client APIs
	Barista Client APIs
	A Sample Python Client

	Evaluation
	Related Work
	Supplementary Materials

